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improvement than the visual training and control conditions. This
result was specific to the trained ability (arithmetic) and is dis-
cussed in light of the multisensory redundancy hypothesis.

© 2019 Elsevier Inc. All rights reserved.

Introduction

Embodied cognition refers to the idea that human cognition is rooted in the bidirectional percep-
tual and physical interactions of the body with the external world (Gibson, 2014; Wilson, 2002).
Within this framework, our mental representations are influenced by the perceptual and motor sys-
tems including body shape and movement, neural systems engaged in action planning, and systems
involved in sensation and perception (Glenberg, 2010).

Whereas mathematics is one of the most abstract domains of human cognition, there is ample evi-
dence that different aspects of numerical processing are embodied. First, people raised in Western cul-
tures usually associate increasingly larger number names with increasingly right-sided actions (Opfer
& Furlong, 2011; Shaki, Fischer, & Gd&bel, 2012). This ubiquitous spatial-numerical association of
response codes (SNARC) effect has been assumed to result from preferred sensorimotor habits and
has been observed in several situations. For example, during numerical tasks using a two-
alternative forced-choice paradigm (e.g., number comparison and parity judgment tasks), participants
respond faster to smaller numbers (relative to the numerical range used in the experiment) with left-
sided responses and to larger numbers with right-sided responses (Dehaene, Bossini, & Giraux, 1993;
Dehaene, Dupoux, & Mehler, 1990). The intrinsic connection between numbers and space has also
been found in tasks involving arithmetic problem solving (Masson & Pesenti, 2014; McCrink,
Dehaene, & Dehaene-Lambertz, 2007). Addition and subtraction operations indeed involve spatial
movements on the mental number line—a rightward displacement for addition operations and a left-
ward displacement for subtraction operations, that is, the operational momentum effect (Knops,
Viarouge, & Dehaene, 2009; Masson & Pesenti, 2014; McCrink et al., 2007; McCrink & Wynn, 2004,
2009; Pinhas & Fischer, 2008). Finally, training or remediation programs fostering the use of a spatial
(left-to-right) mapping of numbers have been shown to improve children’s performance on a series of
numerical tasks measuring number magnitude, number comparison, number positioning on a line
(Ramani & Siegler, 2008), and even arithmetic abilities (Booth & Siegler, 2008; Kucian et al., 2011;
Vilette, Mawart, & Rusinek, 2010). Spatial processing, therefore, could provide humans the sensorimo-
tor roots of a deep understanding of the number concept (Dehaene & Cohen, 2007).

Another prime example that different aspects of mathematics are embodied is related to the fact
that body-based counting systems have emerged across cultures and history (Bender & Beller,
2012). Finger counting is probably the most widespread of these systems given that most children
in Western cultures use their fingers while learning to count and calculate (Butterworth, 1999). If it
has been demonstrated that finger gnosis training could improve mathematics learning in young chil-
dren (Gracia-Bafalluy & Noél, 2008), other studies recently suggested that body movements in general
may boost children’s understanding of abstract numerical concepts. Children’s accuracy in positioning
a number on a number line, for example, has been shown to increase more strongly after sensorimotor
training requiring children to walk on the line than after control training without physical spatial ele-
ments (Dackermann, Fischer, Huber, Nuerk, & Moeller, 2016; Fischer, Moeller, Bientzle, Cress, & Nuerk,
2011). Manipulation of objects such as the one involved in playing linear number board games
enhances children’s numerical knowledge (Ramani & Siegler, 2008; Siegler & Ramani, 2008), and tac-
tile exploration allows children to learn several abstract concepts more easily (for letter recognition
and handwriting, see Bara & Gentaz, 2011; for geometry, see Pinet & Gentaz, 2008). In the study of
Pinet and Gentaz (2008), for example, children were trained to recognize plane geometrical figures
using two learning methods that differed according to the perceptual modalities involved in the explo-
ration of the stimuli. Children either used their visual modality in the classic learning method or used
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both their visual and haptic modalities in the multisensory learning method. The ability to recognize
the geometrical figures was better after the multisensory method than after the visual one. If this
visuohaptic advantage is very well in line with theories of embodied cognition granting the body a
central role in shaping the mind (Wilson, 2002), it is also very well in line with the intersensory redun-
dancy hypothesis (Bahrick & Lickliter, 2000). According to this hypothesis, multisensory stimulation
can enhance early perceptual, affective, and cognitive discrimination. Information simultaneously
available across two or more modalities, therefore, is highly salient and may be learned and remem-
bered better than the same information presented to only one modality. In line with this idea, it has
been demonstrated that preschool children perform better in a numerical matching task when pro-
vided with multisensory rather than unisensory information about numbers (Jordan & Baker, 2011).

In the current experiment, we wanted to examine whether visuohaptic (multisensory) training of
aritmetic could lead to higher improvement in basic numerical understanding as compared with a
visual training condition. Moreover, because numerous studies have already demonstrated that spatial
numerical training improved several numerical abilities (Booth & Siegler, 2008; Kucian et al., 2011;
Ramani & Siegler, 2008; Vilette et al., 2010), we also wanted to examine whether the spatial layout
of the materials used (linear vs. random) could affect the effectiveness of our training methods. To
meet those aims, four arithmetic training methods were developed according to two factors: (a) the
perceptual modalities involved in processing the arithmetic operations (multisensory vs. visual only)
and (b) the spatial disposition of the materials used (linear or left-to-right oriented vs. nonlinear or
random). To better evaluate the test-restest effect, a control (non-numerical) training condition
was also used. Preschool children were randomly allocated to one of these five training groups and
were tested with arithmetic and basic numerical tasks (number-to-position, number comparison,
counting, and subitizing) both before and after training.

Because several numerical tasks were used as pre- and post-test measures, we were able to eval-
uate the respective contributions of sensory and spatial information to the understanding of arith-
metic and basic numerical abilities. We expected (a) larger improvement of performance after the
multisensory training than after the visual and control training, especially in the arithmetic and count-
ing tasks entrained; (b) larger improvement of performance after the training conditions using left-to-
right number-space mapping compared with random disposition, especially in the number-to-
position and SNARC tasks because these tasks are assumed to rely on space processing; (c) no
improvement of performance in the subitizing task because this ability is assumed to be a stable quan-
tification process (Kaufman, Lord, Reese, & Volkmann, 1949; Mandler & Shebo, 1982; Trick & Pylyshyn,
1994); and (d) no improvement of numerical performances in the control group or just a mere test—
retest effect.

Method
Participants

A total of 86 preschool children participated in this study. However, 1 child was removed from the
analyses because that child’s scores were 2 standard deviations below the mean of the group in the
pre- and post-test sessions. The remaining 85 children were recruited from a school in Walloon Bra-
bant province (Belgium). All the children were 5 or 6 years of age (M = 5.26 years, SD = 0.68; 43 girls
and 42 boys). Among the sample, 5 children were left-handed, 1 child was ambidextrous, and all other
children (n =79) were right-handed. Testing occurred at the end of the school year (from March to
June) during 2 consecutive years. Procedures were approved by the research ethics boards of the
Université Catholique de Louvain. Parents gave written consent for the participation of their children
in the study. The sample size was determined by the number of participants we were able to recruit in
the same school in 2 consecutive years.

Training

Four numerical training methods were created. Based on other studies examining the efficiency of
the haptic modality in teaching geometry, handwriting, or letter recognition (Bara & Gentaz, 2011;
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Pinet & Gentaz, 2008), our training conditions all consisted of three training sessions of approximately
20 min and involved small groups of 4 to 5 children.

The numerical training methods used differed according to two factors: (a) the perceptual modal-
ities involved in processing the arithmetic operations and (b) the spatial disposition of the materials
used to learn. Children used either their visual modality in the classic visual learning method or their
visual and haptic modalities in the multisensory learning method. In each perceptual training, the spa-
tial disposition of the materials was either linear or random, yielding four numerical training condi-
tions: multisensory linear (ML), multisensory random (MR), visual linear (VL), and visual random
(VR) interventions. Children were randomly assigned to a specific training condition (n = 17 per train-
ing condition; see Supplemental Table 1 in the online supplementary material for a repartition of the
participants in each training condition).

In each training condition, children needed to perform addition or subtraction operations. The first
session was devoted to solving 10 addition problems, the second session to solving 10 subtraction
problems, and the third session to consolidating the first two sessions by asking children to solve five
addition and five subtraction problems already trained in the first two sessions (see Supplemental
Table 2 for a list of the operations trained). The arithmetic operations were presented visually by
means of magnetized Arabic numbers positioned on a blackboard. Cards with a written Arabic digit
(from 1 to 10) were placed in front of each child. To give their answer, children needed to choose
the appropriate number card, position it upside down on an envelope, wait until all other children
were ready, and then—all together—return the card to check the answer with the experimenter. The
response procedure described above was chosen to ensure the involvment of each child in the training
session. “Mickey” and “Donald” Walt Disney figurines were used to increase the attractiveness of our
training methods.

In the ML group, children were placed in front of a 10-ball abacus with Mickey located on the left
end of the abacus and Donald located on the right end (see Fig. 1, top left). At the beginning of each
trial, the 10 balls were positionned on Donald’s side. Children were first told that Donald needed to
give a specific number of balls to Mickey. Accordingly, each child moved the corresponding number
of balls toward the left side and put a clothespin after this series of balls. Then, depending on the oper-
ations trained, either Donald gave new balls to Mickey (addition) or Mickey returned a specific num-
ber of balls to Donald (subtraction). After each ball addition or removal, a clothespin needed to be
attached to the abacus (after the added balls or just before the removed balls). This procedure was
used to help children keep track of the two operands of the arithmetic operation presented.

In the MR group, children were presented with two small boxes (Mickey’s box on their left and
Donald’s box on their right) (see Fig. 1, top right). At the beginning of each trial, the 10 balls were ran-
domly positionned in Donald’s box. Children were first required to give some balls to Mickey. Then,
depending on the operations trained, either Donald gave new balls to Mickey (addition) or Mickey
returned a specific number of balls to Donald (subtraction) and children needed to add or remove balls
from Mickey’s box. To help children keep track of the operands, the added or removed balls needed to
be positioned on a lid next to Mikey’s box.

In the VL group, a left-to-right-oriented line of 10 white cricles (see Fig. 1, bottom left) was posi-
tionned in front of children. For addition operations, Mickey and a box of precolored red circles were
positioned at the left end of the line, whereas Donald and a box of precolored blue circles were posi-
tioned at the right end of the line. Children were told that Mickey was going to color circles in red and
that Donald was going to color circles in blue. The two colors were used to represent both operands of
the addition. For subtraction operations, Donald’s box was empty at the beginning of each trial. Chil-
dren were told that Mickey was going to color circles in red and that Donald was going to erase some
of the circles colored by Mickey. The erased circles were positionned in Donald’s box. The experi-
menter performed the operation by manipulating the precolored circles. Children’s task consisted in
finding the outcome of the arithmetic operation performed by the experimenter. In contrast to what
happended in the multisensory training, children were only asked to look at what the experimenter
was doing. They were not allowed to touch or manipulate the materials while the experimenter per-
formed the operation.

In the VR group, the experimental procedure was the same as for the VL group except that a ran-
dom position of 10 circles was used by the experimenter as a basis to perform the arithmetic opera-
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Fig. 1. Visual depiction of the four numerical training conditions.

tions (see Fig. 1, bottom right). The location of the circles was preestablished and fixed across training
groups.

In the non-numerical control (CTRL) group (adapted from Honoré & Noél, 2016), stories of approx-
imately 20 min were read to the children (a different story in each of the three training sessions). The
meaning of three difficult words was explained in the context of each story: “dune” (dune), “mirage”
(mirage), and “chéche” (chech) in the first story; “montagnard” (mountain dweller), “baluchon” (bun-
dle), and “brise” (breeze) in the second story; and “picorer” (to peck), “miauler” (to meow), and “avoir
la frousse” (expression to say to be scared) in the third story.

Pre- and post-training measures

Pretests were carried out by three different experimenters. As soon as all the pretests were done,
the three training sessions started. Because we were interested in examining the short-term effect of
our different training conditions, the training sessions were held over 3 consecutive days (by the first
author) and the post-tests were carried out by two other experimenters blind to children’s condition 1
or 2 days after the third training session.

The presentation of the tasks used and the result sections are organized into three different parts,
with each one being related to one specific hypothesis. The first part presents the results of the tasks
entrained (arithmetic and counting) and was intended to examine our first hypothesis: Is it possible to
observe a larger improvement of performance after the visuohaptic training than after the visual and
control training? The second part presents the results of the spatial tasks (number-to-position and
number comparison) and is related to our second hypothesis: s it possible to observe a larger
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improvement of performance after the training conditions using a left-to-right number-space map-
ping? The third part of our result section presents the data of the subitizing task that corresponds
to our control task.

Tasks entrained

Arithmetic operations

Children were required to perform 10 simple addition and 10 subtraction operations, each involv-
ing two quantities that could be represented with one-digit numbers. A non-symbolic collection of
animals always represented the first operand, whereas the second operand was always represented
as a symbolic Arabic number (see Fig. 2A et B). Half of the operations (5 additions and 5 subtractions)
was trained during the training sessions, and the other half consisted in untrained operations (see
Fig. 2C). The experimenter gave the following instructions for the addition operations: “Can you help
me count the animals? Look here. There are two rabbits. If three others arrive, how many will there
be?” Instructions were similar for subtraction operations: “Look here. There are eight mice. If six mice
leave, how many are left?” Responses were recorded by the experimenter, and 1 point was given for
each correct answer, giving a maximun total score of 20. Percentage of correct responses was
calculated.

Counting

To assess the knowledge of the counting word sequence, children were first asked to count orally as
far as possible. Here, 1 point was given when the couting range fell between 1 and 10; 2 points were
given for a counting range of 11-20; 3 points were given for a range of 21-30; and 4 points were given
when the child was able to count beyond 30. Children were also required to count up to 9 and up to 6,
to count onward from 3 and from 7, to count from 5 to 9 and from 4 to 8, and to count down from 7
and from 15. Here, 1 point was given for each correct response. All these items were drawn from the
TEDIMATH Battery (Van Nieuwenhoven, Grégoire, & Noél, 2001). The maximum total score was 12.

Spatial tasks

Number-to-position

The number-to-position task (Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Booth & Siegler,
2006; Siegler & Booth, 2004; Siegler & Opfer, 2003) was composed of 18 horizontal black lines 1 mm
wide and 23 cm long. Each line was labeled 1 at its left end and 20 at its right end (see Honoré & Noél,
2016, for a similar procedure). The lines were presented in the middle of four different white sheets of

A B C

Additions Subtractions

S
-:i Llif) Trained Untrained Trained Untrained

2+4 2+3 3-2 3-1

1+6 4+1 6-4 5-2

4+5 2+8 8-6 7-3

5+3 1+9 10-3 9-6
+ 3 - 6

7+1 2+6 9-7 10-8

Fig. 2. (A and B) Examples of stimuli for addition operations (A) and subtraction operations (B). (C) List of trained and untrained
addition and subtraction operations.
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paper (21 x 30 cm, five lines per page). The sheet was laid in front of participants’ midline. Children
were told that they needed to show where they thought different numbers (all the numbers between
2 and 19) would fall on the line by marking the location with a pencil. The numbers were randomly
and auditorily presented by the experimenter. Each line was covered after it was marked to ensure
that children were not biased by their previous responses. There was no time restriction. Three chil-
dren (one child from the CTRL group, one from the VL group, and one from the VR group) were unable
to perform the task. They did not understand the instructions and, therefore, were removed from the
analyses of this task.

Number comparison

In this computerized task, children were presented with an Arabic digit and were asked to judge
whether it was smaller or larger than 5 (Dehaene et al., 1993). The Arabic digits used were numbers
1-9 (except for 5). Children were instructed to respond as quickly and accurately as possible by press-
ing one of two response keys. The task comprised two response assignments. In the first condition (the
congruent condition), the “smaller than 5” response was assigned to the left response key, whereas the
“larger than 5” response was assigned to the right response key. In the second condition (the noncon-
gruent condition), the reverse assignment was used: the “larger than 5” response to the left key and
the “smaller than 5” response to the right key. To help understanding of the instructions, small and
large snowmen were associated with the appropriate response key (see Crollen & Noél, 2015, and
Crollen, Vanderclausen, Allaire, Pollaris, & Noél, 2015, for a similar procedure). The order of the
response assignment was counterbalanced across participants. Stimuli were delivered and reaction
times were recorded using E-Prime. Each Arabic digit was presented four times in each condition, giv-
ing a total of 64 trials [number (8) x presentation (4) x response mode (2)] randomly presented in
two experimental blocks. Each trial began with the presentation of a fixation cross for 500 ms. An Ara-
bic number between 1 and 9 (except 5) then appeared in the center of the computer screen and
remained on the screen until participants responded. The interstimulus interval ranged from 800 to
1200 ms. Eight practice trials were given before starting each response assignment. One child from
the VL group was removed from the analyses due to technical problems.

Control task

Subitizing

Children were briefly presented, on the computer screen, arrays of one to six dots and were asked
to say out loud how many dots were presented as accurately as they could (Attout, Noél, Vossius, &
Rousselle, 2017). Stimuli were presented on a gray background with the E-Prime experimental soft-
ware. Each trial started with the presentation of a central red fixation cross for 500 ms, followed by
the display of the target collection of one to six dots for 250 ms. The collection was then immediately
occulted by two successive masks of 100 ms. Finally, a screen with a question mark was presented
until participants gave their response orally (see Supplemental Fig. 1). A numerical pad was used
by the experimenter to type children’s responses. The stimuli consisted of one to six randomly
arranged black dots of equal size (6 mm in diameter) plotted randomly in the cells of a 6 x 6 virtual
matrix. Each numerosity was presented six times in different configurations. By contrast, the mask
consisted of dots of heterogeneous size and covered the whole surface of the screen. The experiment
started with six practice trials.

Results

Analyses of variance (ANOVAs) were conducted to analyze the data. The Greenhouse-Geisser cor-
rection was applied when the sphericity assumption was violated. However, for ease of comprehen-
sion, non-corrected degrees of freedom are reported. Because the reaction times in the number
comparison task were not normally distributed, they were logarithmically transformed. Moreover,
analyses were performed on the median reaction times to avoid any contamination of the results
by outlier data.
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Tasks entrained

Arithmetic

The percentage of correct responses was calculated in the arithmetic task and submitted to a
repeated-measures ANOVA with session (pretest or posttest) as the within-participant variable and
modality (multisensory, visual, or control) and linearity (linear, random, or control) as the between-
participant factors. Results demonstrated a significant effect of session, F(1, 80)=61.05, p <.001,
ni=.43. Children’s performances were indeed higher in the post-test session
(M £ SE = 64.29 £ 2.70%) than in the pre-test session (M + SE = 48.41 + 2.91%). The modality and linear-
ity effects were not significant, F(1, 80) = 0.06, p > .80, 773 =.001 and F(1, 80) = 0.02, p > .80, 13 = .001,
respectively. However, there was a significant Session x Modality interaction, F(1, 80) = 3.88, p <.05,
1% = .05. To further examine this Session x Modality interaction, we measured performance improve-
ments from pre-test to post-test in the multisensory and visual training groups by calculating a learn-
ing measure as follows: score post-test — score pre-test. A one-way ANOVA with modality as the
between-participant factor was then carried out on this measure and confirmed the effect of modality
on this learning measure, F(2, 84) = 5.46, p <.01. Bonferroni post hoc tests higlighted that children’s
performance improvements were larger in the multisensory training group (M % SE = 22.35 + 2.58%)
as compared with the control group (M*SE=6.18+5.15%, p=.002) and visual group
(M £SE=14.26 +2.78%, p =.05) (see Fig. 3A). No other interactions were significant, F(1, 80) = 1.40,
p > .20, 175 =.01 for the Session x Linearity interaction; F(1, 80)=0.22, p > .60, 13 =.003 for the Ses-
sion x Modality x Linearity interaction.

Counting

In the counting task, a 2 (Session: pretest or posttest) x 3 (Modality: multisensory, visual, or con-
trol) x 3 (Linearity: linear, random, or control) ANOVA was performed on the accuracy scores (trans-
formed in percentages). This analysis showed a significant effect only of session, F(1, 80)=33.57,
p<.001, x2=.30. Children’s accuracy scores were larger in the post-test session
(M £ SE=77.84 £ 1.98%) than in the pre-test session (M * SE = 68.72 + 2.29%). There were no effects
of modality, F(1, 80) = 0.15, p >.70, 52 = .002, or linearity, F(1, 80) = 0.25, p > .60, #3 = .003. No interac-
tion was higlighted either, suggesting that the performance improvement was similarly observed in
every training condition (see Fig. 3D).

Spatial tasks

Number-to-position

In the number-to-position task, the absolute deviations to the true number position (i.e., absolute
deviation score, hereafter called |DS|) were carefully measured as follows: |participant’s number esti-
mation-true number|. However, the 2 (Session: pretest or posttest) x 3 (Modality: multisensory,
visual, or control) x 3 (Linearity: linear, random, or control) ANOVA performed on this measure did
not higlight any significant main effect (see Fig. 3B), F(1, 77) = 0.47, p > .40, 53 = .006 for the session
effect; F(1, 80)=1.72, p>.10, 13 = .02 for the modality effect; F(1, 80) = 0.79, p >.30, 72 =.01 for the
linearity effect. No interactions were highlighted either, F(1, 77) = 0.86, p > .30, 13 = .01 for the Ses-
sion x Modality interaction; F(1, 77)=0.45, p > .50, r]ﬁ =.006 for the Session x Linearity interaction;
F(1,77)=0.85, p > .30, 173 =.01 for the Session x Modality x Linearity interaction.

Number comparison

In the number comparison task, a 2 (Session: pretest or posttest) x 3 (Modality: multisensory,
visual, or control) x 3 (Linearity: linear, random, or control) x 2 (Condition: congruent or noncongru-
ent) ANOVA was first performed on the accuracy scores. This analysis did not highlight any significant
effect (see Fig. 3C). The same 2 (Session: pretest or posttest) x 3 (Modality: multisensory, visual, or
control) x 3 (Linearity: linear, random, or control) x 2 (Condition: congruent or noncongruent)
ANOVA was then performed on the logarithm of the median reaction times (for correct responses).
For ease of comprehension, however, non-transformed values (in milliseconds) are presented in the
text. One child from the VL group was removed from the analysis because that child failed to give
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any correct response in the non-congruent condition of the post-test session. The results demon-
strated an effect of session, F(1, 79) = 18.64, p <.001, 53 =.19. Children responded faster in the post-
test session (M + SE =1263.27 £53.09) than in the pre-test session (M + SE = 1430.07 £ 58.71). This
analysis, however, failed to demonstrate the presence of the SNARC effect. The condition effect was
indeed not significant, F(1, 79) = 1.69, p > .10, 7]129 =.02, suggesting that children were not faster in
the congruent condition (M+SE=1328.39+56.98) than in the incongruent condition
(M £ SE = 1364.95 + 53.39). The modality and linearity effects were not highlighted either, F(1, 79)
=0.01, p>.90, 73 =.001 for the modality effect; F(1,79) = 0.06, p > .80, 2 = .001 for the linearity effect.
Only one interaction (Condition x Linearity) was significant, F(1, 79) =9.10, p < .01, 11123 =.10. To further
examine this interaction, the difference between the congruent and noncongruent conditions (i.e.,
congruence effect) was first calculated in each session and in each training group. A negative value
indicated that children responded faster in the congruent condition than in the noncongruent condi-
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tion. This measure was submitted to a one-way ANOVA with the linearity variable as the between-
participant factor. Results confirmed the effect of linearity, F(2, 83) = 6.32, p <.01, and post-hoc tests
demonstrated that the linear training groups (M = SE = —160 + 45.72) were different from the control
group (M + SE = —0.62 + 256.18, p =.02) and random group (M * SE =4.31 £ 37.97, p =.001). The con-
trol and random groups were not different from each other (p >.60). The congruence (SNARC) effect,
therefore, was larger in the linear training groups. However, this effect was not related to the training
condition given that it did not interact with the session variable.

Control task

Subitizing

A 2 (Session: pretest or posttest) x 6 (Numerosities: 1, 2, 3, 4, 5, or 6) x 3 (Modality: multisensory,
visual, or control) x 3 (Linearity: linear, random, or control) ANOVA was performed on the accuracy
scores (transformed in percentages). This analysis did not show any significant session effect, F(1,
80)=2.64, p>.10, nﬁ =.03, but demonstrated a main effect of numerosity, F(5, 400)=225.91,
p <.001, 73 =.74. An inspection of Fig. 3 reflected the existence of the subitizing range (1-3), which
is characterized by a steep decline in performance starting at 4 in every training condition; numerosi-
ties 1, 2, and 3 were indeed not different from each other (all ps >.10), whereas numerosities 4, 5, and
6 were different from all the other numerosities (all ps <.001). There was no main effect of modality, F
(1, 80)=0.25, p > .60, 173 = .003, no main effect of linearity, F(1, 80) = 0.50, p > .40, 13 = .06, and no sig-
nificant interactions. As expected, therefore, arithmetic training did not lead to an enlargment of the
subitizing range. This was true in every training group (see Fig. 3E).

Discussion

In this study, we wanted to evaluate the respective contributions of sensory modalities and spatial
orientation for basic arithmetic learning. To do so, preschoolers were trained to solve simple addition
and subtraction operations. The numerical training methods differed according to the perceptual
modalities (multisensory vs. visual) and the spatial disposition of the materials used (linear vs. ran-
dom) (see Fig. 2). To evaluate whether training arithmetic could induce some learning transfer, chil-
dren were tested on an arithmetic task as well as on other numerical abilities (number comparison,
number-to-position, counting, and subitizing) both before and after training. A control training group
in which children needed to listen to stories was finally created to test whether the performance
improvement was due to the numerical training or to a mere test-retest effect.

Multisensory versus visual training

Our results demonstrated that the multisensory training induced a larger improvement in arith-
metic performance as compared with the visual and control training methods. This observation is very
well in line with previous experiments demonstrating an advantage of the haptic modality in under-
standing abstract concepts such as letter recognition, handwriting quality (Bara & Gentaz, 2011), and
geometry (Pinet & Gentaz, 2008).

Our results are also in accordance with theories of embodied cognition granting the body a central
role in shaping the mind (Wilson, 2002). According to these theories, cognitive skills emerged from
elementary perception-action processes that are rooted in concrete real-life interactions (Gibson,
2014; Glenberg, 2010). Involving haptic manipulation or body movements for education purposes,
therefore, could improve learning by providing additional cues for representing abstract concepts.
We should acknowledge, however, that participative learning was enhanced in our multisensory
training. So, we do not know whether it is the passive versus active distinction or the multisensory
versus unisensory distinction that is important for education puproses. We also do not know whether
coupling other sensory modalities (audition and vision or audition and touch) or using the haptic
modality alone would have produced the same effects.
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Even though these issues deserve to be further studied, our data are nevertheless well explained by
the intersensory redundancy hypothesis (Bahrick & Lickliter, 2000, 2002). Intersensory redundancy
refers to a particular type of multisensory stimulation in which the same information is presented
simultaneously to two or more sensory modalities. It arises from an interaction between an organism
and its environment, makes information highly salient, and therefore can direct attention and play a
foundational role in cognitive development (Bahrick & Lickliter, 2002).

Because it was recently demonstrated that finger gnosis predicts a small part of variance in initial
arithmetic competencies (Newman, 2016; Wasner, Nuerk, Martignon, Roesch, & Moeller, 2016), it
could be interesting, in the future, to compare the efficiency of multisensory and finger-based inter-
vention practices.

Linear versus random training

Much evidence has suggested the existence of a close link between numbers and space (see Crollen,
Collignon, & Noél, 2017; de Hevia, Vallar, & Girelli, 2008, for reviews). Although addition and subtrac-
tion operations are assumed to involve movements on the mental number line (Knops et al., 2009;
Masson & Pesenti, 2014; McCrink et al., 2007; McCrink & Wynn, 2004, 2009; Pinhas & Fischer,
2008), and despite the fact that our linear training conditions were left-to-right oriented, we did
not find any advantage of the linear training over the random condition.

Our results could perhaps be explained by the age of the children tested. The SNARC effect, which is
probably the most widespread demonstration of the strong association between numbers and space,
has been linked to writing and reading direction. It was observed in 7-year-olds when explicit process-
ing of numerical magnitude was required in a magnitude comparison task and in 8-and 9-year-olds
when the numerical information was not explicitly processed in a parity judgment task (Imbo,
Brauwer, Fias, & Gevers, 2012; van Galen & Reitsma, 2008). The children involved in the current study
were 5 or 6 years old. Therefore, they were tested before the acquisition of writing and reading and,
accordingly, did not systematically present the SNARC effect. Therefore, it is possible that the spatial
characteristics of our training methods were irrelevant for children of that age. In accordance with this
idea, previous experiments showing a link between spatial mapping of numbers and numerical com-
petencies either tested children over 7 years of age (Booth & Siegler, 2008; Kucian et al., 2011; Vilette
et al., 2010), used number-to-position training with Arabic digits (Booth & Siegler, 2008; Fischer et al.,
2011), or did not directly contrast training involving linear and random spatial disposition
(Dackermann et al., 2016; Fischer et al., 2011; Ramani & Siegler, 2008). It is true that some operational
momemtum and SNARC-like effects have been found in younger children (see McCrink & Wynn, 2004,
2009, for the operational momentum effect; see Bulf, de Hevia, & Macchi Cassia, 2016, and Patro &
Haman, 2012, for the SNARC-like effect). However, these effects were highlighted with nonsymbolic
stimuli, whereas symbolic stimuli were included in all the tasks of the current study. With symbolic
stimuli, SNARC effects were demonstrated in Chinese kindergarteners (Yang et al., 2014) but were
observed later in Western children (7- and 8-year-olds: Gibson & Maurer, 2016; 5.8-year-olds:
Hoffmann, Hornung, Martin, & Schiltz, 2013). Indeed, when preschool children need to perform a mag-
nitude judgment task requiring exact number knowledge (as in the current study), the SNARC effect
seems to emerge only at 5.8 years. It is linked to proficiency with Arabic digits and emerges from for-
mal or informal schooling (Hoffmann et al., 2013), which is not the case with the 5-year-olds tested in
the current study. Although previous studies demonstrated that number-space mappings were
related to arithmetic abilities (Georges, Hoffmann, & Schiltz, 2017; Moeller et al., 2012), we failed
to conclusively highlight the opposite relation (an influence of arithmetic training on the strength
of number-space mappings). Because our study involves a small sample size, however, it could be
interesting to examine whether such an effect could appear with more participants.

Learning transfer
Performance improvements were observed in three different tasks: counting, number comparison,

and arithmetic. However, the improvements observed in the counting and number comparison tasks
were not specifically due to the numerical training. An increase of performance was observed in the
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different numerical training conditions but was also observed in the control training. Therefore, we
cannot exclude the possibility that this global session effect actually reflects a test-retest effect. In
the arithmetic task, in contrast, performance improvements were larger in the mutlisensory numerical
training conditions as compared with the control training condition. This suggests that the multisen-
sory training had a specific effect on the trained task (arithmetic) and did not generalize to other
numerical abilities.

Limitations

The current article cannot exclude the fact that children simply used counting and did not really
perform arithmetic computations during the training. However, counting can be seen as the means
by which children begin to make sense of addition and subtraction. The end product of learning to
add and subtract indeed corresponds to being able to retrieve addition and subtraction “facts” from
memory. However, this retrieval strategy develops gradually (Resnick, 1989), and before children
can make full use of it they need to deploy other strategies to enable them to find sums or differences.
One such strategy is counting. For addition, the procedure that children typically use first is counting
out two sets of objects (one for each of the addends), combining the two sets, and then counting the
newly combined set (counting all). For subtraction, children typically represent the larger quantity
(the minuend), remove the smaller quantity (the subtrahend) from the minuend, and then count what
is left. Then, progress toward the mature strategy of retrieval is a process of gradual refinement and
abandonment of counting with a complementary gradual use of retrieval. Improving children’s count-
ing abilities, therefore, can lead to arithmetic ability improvements as well. By asking children to per-
form, in the third training session, some of the operations already trained in the first two sessions, we
wanted to accelerate this gradual refinement.

Finally, we cannot exclude the fact that our numerical training actually helped children to process
continuous dimensions covarying with numbers such as density and surface area. Within this context,
the multisensory training could be causing children to experience numbers as discrete entities,
whereas the visual condition may still allow children to look at them as some kind of continuous
quantity—making the multisensory stimuli more “countable” and “precise” for matching to symbols.
This alternative interpretation does not, however, invalidate our conclusion according to which the
multisensory training leads to larger performance improvements than the visual training alone.

General conclusions

In this article, we suggested that intersensory redundancy could boost the development of arith-
metic abilities. By conducting a training study, we were able to evaluate the functional relationship
between multisensory information and arithmetic learning in healthy children. In the future, it would
be worthwhile to consider whether a multisensory teaching of arithmetic could boost the understand-
ing of arithmetic in children presenting numerical disabilities.
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