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Abstract Is vision necessary for the development of the categorical organization of the Ventral

Occipito-Temporal Cortex (VOTC)? We used fMRI to characterize VOTC responses to eight

categories presented acoustically in sighted and early blind individuals, and visually in a separate

sighted group. We observed that VOTC reliably encodes sound categories in sighted and blind

people using a representational structure and connectivity partially similar to the one found in

vision. Sound categories were, however, more reliably encoded in the blind than the sighted group,

using a representational format closer to the one found in vision. Crucially, VOTC in blind

represents the categorical membership of sounds rather than their acoustic features. Our results

suggest that sounds trigger categorical responses in the VOTC of congenitally blind and sighted

people that partially match the topography and functional profile of the visual response, despite

qualitative nuances in the categorical organization of VOTC between modalities and groups.

Introduction
The study of sensory deprived individuals represents a unique model system to test how sensory

experience interacts with intrinsic biological constraints to shape the functional organization of the

brain. One of the most striking demonstrations of experience-dependent plasticity comes from stud-

ies of blind individuals showing that the occipital cortex (traditionally considered as visual) massively

extends its response repertoire to non-visual inputs (Neville and Bavelier, 2002; Sadato et al.,

1998).

But what are the mechanisms guiding this process of brain reorganization? It was suggested that

the occipital cortex of people born blind is repurposed toward new functions that are distant from

the typical tuning of these regions for vision (Bedny, 2017). In fact, the functional organization of

occipital regions has been thought to develop based on innate protomaps implementing a computa-

tional bias for low-level visual features including retinal eccentricity bias (Malach et al., 2002), orien-

tation content (Rice et al., 2014), spatial frequency content (Rajimehr et al., 2011) and the average

curvilinearity/rectilinearity of stimuli (Nasr et al., 2014). This proto-organization would serve as low-

level visual biases scaffolding experience-dependent domain specialization (Arcaro and Livingstone,

2017; Gomez et al., 2019). Consequently, in absence of visual experience, the functional organiza-

tion of the occipital cortex could not develop according to this visual proto-organization and those

regions may therefore switch their functional tuning toward distant computations (Bedny, 2017).

In striking contrast with this view, several studies suggested that the occipital cortex of congeni-

tally blind people maintains a division of computational labor somewhat similar to the one character-

izing the sighted brain (Amedi et al., 2010; Dormal and Collignon, 2011; Ricciardi et al., 2007).

Perhaps, the most striking demonstration that the occipital cortex of blind people develops a similar

Mattioni et al. eLife 2020;9:e50732. DOI: https://doi.org/10.7554/eLife.50732 1 of 33

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.50732
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


coding structure and topography as the one typically observed in sighted people comes from stud-

ies exploring the response properties of the ventral occipito-temporal cortex (VOTC). In sighted indi-

viduals, lesion and neuroimaging studies have demonstrated that VOTC shows a medial to lateral

segregation in response to living and non-living visual stimuli, respectively, and that some specific

regions respond preferentially to visual objects of specific categories like the fusiform face area

(FFA; Kanwisher et al., 1997; Tong et al., 2000), the extrastriate body area (EBA; Downing et al.,

2001) or the parahippocampal place area (PPA; Epstein and Kanwisher, 1998). Interestingly, In

early blind people, the functional preference for words (Reich et al., 2011) or letters (Striem-

Amit et al., 2012), motion (Dormal et al., 2016; Poirier et al., 2004), places (He et al., 2013;

Wolbers et al., 2011), bodies (Kitada et al., 2014; Striem-Amit and Amedi, 2014), tools

(Peelen et al., 2013) and shapes (Amedi et al., 2007) partially overlaps with similar categorical

responses in sighted people when processing visual inputs.

Distributed multivariate pattern analyses (Haxby et al., 2001) have also supported the idea that

the large-scale categorical layout in VOTC shares similarities between sighted and blind people

(Handjaras et al., 2016; van den Hurk et al., 2017; Peelen et al., 2014; Wang et al., 2015). For

example, it was shown that the tactile exploration of different manufactured objects (shoes and bot-

tles) elicits distributed activity in VOTC of blind people similar to the one observed in sighted people

in vision (Pietrini et al., 2004). A recent study demonstrated that the response patterns elicited by

eLife digest The world is full of rich and dynamic visual information. To avoid information

overload, the human brain groups inputs into categories such as faces, houses, or tools. A part of

the brain called the ventral occipito-temporal cortex (VOTC) helps categorize visual information.

Specific parts of the VOTC prefer different types of visual input; for example, one part may tend to

respond more to faces, whilst another may prefer houses. However, it is not clear how the VOTC

characterizes information.

One idea is that similarities between certain types of visual information may drive how

information is organized in the VOTC. For example, looking at faces requires using central vision,

while looking at houses requires using peripheral vision. Furthermore, all faces have a roundish

shape while houses tend to have a more rectangular shape. Another possibility, however, is that the

categorization of different inputs cannot be explained just by vision, and is also be driven by higher-

level aspects of each category. For instance, how humans use or interact with something may also

influence how an input is categorized. If categories are established depending (at least partially) on

these higher-level aspects, rather than purely through visual likeness, it is likely that the VOTC would

respond similarly to both sounds and images representing these categories.

Now, Mattioni et al. have tested how individuals with and without sight respond to eight different

categories of information to find out whether or not categorization is driven purely by visual

likeness. Each category was presented to participants using sounds while measuring their brain

activity. In addition, a group of participants who could see were also presented with the categories

visually. Mattioni et al. then compared what happened in the VOTC of the three groups – sighted

people presented with sounds, blind people presented with sounds, and sighted people presented

with images – in response to each category.

The experiment revealed that the VOTC organizes both auditory and visual information in a

similar way. However, there were more similarities between the way blind people categorized

auditory information and how sighted people categorized visual information than between how

sighted people categorized each type of input. Mattioni et al. also found that the region of the

VOTC that responds to inanimate objects massively overlapped across the three groups, whereas

the part of the VOTC that responds to living things was more variable.

These findings suggest that the way that the VOTC organizes information is, at least partly,

independent from vision. The experiments also provide some information about how the brain

reorganizes in people who are born blind. Further studies may reveal how differences in the VOTC

of people with and without sight affect regions typically associated with auditory categorization, and

potentially explain how the brain reorganizes in people who become blind later in life.
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sounds of four different categories in the VOTC of blind people could successfully predict the cate-

gorical response to images of the same categories in the VOTC of sighted controls, suggesting over-

lapping distributed categorical responses in sighted for vision and in blind for sounds (van den Hurk

et al., 2017). All together, these studies suggest that there is more to the development of the cate-

gorical response of VOTC than meets the eye (Collignon et al., 2012).

However, these researches leave several important questions unanswered. If a spatial overlap

exists between the sighted processing visual inputs and the blind processing non-visual material,

whether VOTC represents similar informational content in both groups remains unknown. It is possi-

ble, for instance, that the overlap in categorical responses between groups comes from the fact that

VOTC represents visual attributes in the sighted (Arcaro and Livingstone, 2017; Gomez et al.,

2019) and acoustic attributes in the blind due to crossmodal plasticity (Bavelier and Neville, 2002).

Indeed, several studies involving congenitally blind have shown that their occipital cortex may repre-

sent acoustic features – for instance frequencies (Huber et al., 2019; Watkins et al., 2013) – which

form the basis of the development of categorical selectivity in the auditory cortex (Moerel et al.,

2012). Such preferential responses for visual or acoustic features in the sighted and blind, respec-

tively, may lead to overlapping patterns of activity for similar categories while implementing sepa-

rate computations on the sensory inputs. Alternatively, it is possible that the VOTC of both groups

code for higher-order categorical membership of stimuli presented in vision in sighted and audition

in the blind, at least partial independently from low-level features of the stimuli.

Moreover, the degree of similarity between the categorical representation in sighted and in blind

might differ across different categories: not all the regions in VOTC seem to be affected to the same

extent by the crossmodal plasticity reorganization (Bi et al., 2016; Dormal et al., 2018;

Wang et al., 2015). This ‘domain–by–modality interaction’ suggests that intrinsic characteristics of

objects belonging to different categories might drive this difference. However, a qualitative explora-

tion of the structure of the categorical representation in the VOTC of blind and sighted is still

missing.

Another unresolved but important question is whether sighted people also show categorical

responses in VOTC to acoustic information similar to the one they show in vision. For instance, the

two multivariate studies using sensory (not word) stimulation (tactile, Pietrini et al., 2004; auditory,

van den Hurk et al., 2017) of various categories in sighted and blind either did not find the exis-

tence of category-related patterns of response in the ventral temporal cortex of sighted people

(Pietrini et al., 2004) or did not report overlapping distributed response between categories pre-

sented acoustically or visually in sighted people (van den Hurk et al., 2017). Therefore, it remains

controversial whether similar categorical responses in VOTC for visual and non-visual sensory stimuli

only emerge in the absence of bottom-up visual inputs during development or whether it is an orga-

nizational property also found in the VOTC of sighted people.

Finally, it has been suggested that VOTC regions might display similar functional profile for sound

and sight in sighted and blind because different portions of this region integrate specific large-scale

brain networks sharing similar functional coding. However, empirical evidence supporting this mech-

anistic account remains scarce.

With these unsolved questions in mind, we relied on a series of complementary multivariate analy-

ses in order to carry out a comprehensive mapping of the representational geometry underlying

low-level (acoustic or visual features mapping) and categorical responses to images and sounds in

the VOTC of sighted and early blind people.

All together our results demonstrate that early visual deprivation triggers an extension of the

intrinsic, partially non-visual, categorical organization of VOTC, potentially supported by a connectiv-

ity bias of portions of VOTC with specific large-scale functional brain networks. However, the cate-

gorical representation of the auditory stimuli in VOTC of both blind and sighted individuals exhibits

different qualitative nuances compared to the categorical organization generated by visual stimuli in

sighted people.
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Figure 1. Experimental design and topographical selectivity maps. (A) Categories of stimuli and design of the

visual (VIS) and auditory (AUD) fMRI experiments. (B) Averaged untresholded topographical selectivity maps for

the sighted-visual (top), the blind-auditory (center) and the sighted-auditory (bottom) participants. These maps

visualize the functional topography of VOTC to the main four categories in each group. These group maps are

Figure 1 continued on next page
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Results

Topographical selectivity map
Figure 1B represents the topographical selectivity maps, which show the voxel-wise preferred stimu-

lus condition based on a winner take-all approach (for the four main categories: animals, humans,

small objects and places). In the visual modality, we found the well-known functional selectivity map

for visual categories (Julian et al., 2012; Kanwisher, 2010). The auditory selectivity maps of the

blind subjects partially matched the visual map obtained in sighted controls during vision (r = 0.19,

pFDR <0.001). The blind map and the visual control map are strongly correlated.

In addition, a similar selectivity map was also observed in the sighted controls using sounds. The

correlation was significant both with visual map in sighted (r = 0.14, pFDR <0.001), and with the audi-

tory map in blinds (r = 0.06, pFDR = 0.001). The correlation between EBa and SCa was significantly

lower than both the correlation between SCv and EBa (pFDR. = 0.0003) and the correlation between

SCv and SCa (pFDR = 0.0004). Instead, the magnitude of correlation between EBa and SCv was not

significantly different from the correlation between SCa and SCv (pFDR = 0.233).

In Figure 1B we report the results on the four main categories for the simplicity of visualization,

however in the supplemental material we show that the results including eight categories are almost

identical (Figure 1—figure supplement 1).

In order to look at the consistency of the topographical representation of the categories across

subjects within the same group we computed the Jaccard similarity between the topographical

selectivity map of each subject and the mean topographical map of his own group. The one sample

T-test revealed a significant Jaccard similarity in each category and in each group (in all cases

p<0.001, after FDR correction for the 12 comparisons: three groups * four categories), highlighting

a significant consistency of the topographical maps for each category between subjects belonging

to the same group. We performed a repeated measures ANOVA to look at the differences between

categories and groups. We obtained a significant main effect of Category (F(3,138)=18.369;

p=<0.001) and a significant interaction Group*Category (F(6,138)=4.9; p=<0.001), instead the main

effect of Group was not significant (F(2,46)=1.83; p.17). We then run post-hoc. In SCv we did not find

any difference between categories, meaning that the consistency (i.e. the Jaccard similarity) of the

topographical maps for the visual stimuli in sighted was similar for each category. In the SCa group,

the only two significant differences emerged between the category ‘big objects and places’ and the

two animate categories: humans (p=0.01) and animals (p<0.008). In both cases the consistency of

the topographical maps in the big object and places was significantly higher compared to the consis-

tency in the humans and animals’ categories. Finally, in the blind group only the humans and the

manipulable objects categories did not show a significant difference. The animal category was,

indeed, significantly lower than the humans (p=0.01), the manipulable objects (p=0.008) and the big

objects and places (p=0.002). Both, the human and the manipulable objects categories were signifi-

cantly lower compared to the big objects and places category (p=0.004 and p=0.007). Finally, when

we look at the difference between the three groups for each category, the main differences

emerged from the animals and the big objects and places categories. The animals’ category showed

a significantly lower Jaccard similarity within the EBa group compared to both SCa (p=0.008) and

SCv (p=0.001) groups while the similarity of big objects and places category was significantly higher

in EBa compared to SCv (p=0.038).

Figure 1 continued

created for visualization purpose only since statistics are run from single subject maps (see methods). To obtain

those group maps, we first averaged the b-values among participants of the same group in each voxel inside the

VOTC mask for each of our 4 main conditions (animals, humans, manipulable objects and places) separately and

we then assign to each voxel the condition producing the highest b-value. We decided to represent maps

including the 4 main categories (instead of 8) to simplify visualization of the main effects (the correlation values are

almost identical with 8 categories and those maps can be found in supplemental material).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Topographical selectivity map for 8 categories.
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In addition, we wanted to explore the similarity and differences among the topographical repre-

sentations of our categories when they were presented visually compared to when they were pre-

sented acoustically, both in sighted and in blind. To do that, we computed the Jaccard similarity

index for each category, between the topographical map of each blind and sighted subject in the

auditory experiment and the averaged topographical selectivity map of the sighted in the visual

experiment (see Figure 2C for the results). The one-sample T-tests revealed a significant similarity

between EBa and SCv and between SCa and SCv in each category (pFDR <0.001 in all cases). The

repeated measures ANOVA highlighted a significant main effect of Category (F(2.2,69.8) = 31.17,

p<0.001). In both groups’ comparisons the Jaccard similarity was higher between the big objects

and places category compared to the other three categories (animal: p<0.001; human: p<0.001;

manipulable: p<0.001).

Figure 2. Voxels’ count and Jaccard analyses. (A) Number of selective voxels for each category in each group,

within VOTC. Each circle represents one subject, the colored horizontal lines represent the group average and the

vertical black bars are the standard error of the mean across subjects. (B) The Jaccard similarities values within

each group, for each of the four categories. (C) The Jaccard similarity indices between the EBa and the SCv

groups (left side) and the Jaccard similarity indices between the SCa and the SCv groups (right side).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Voxels’ count and Jaccard analyses for eight categories.
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No difference emerged between groups, suggesting comparable level of similarity of the auditory

topographical maps (both in blind and in sighted) with the visual topographical map in sighted

participants.

Finally, since the degree of overlap highlighted by the Jaccard similarity values might be driven

by the number of voxels selective for each category, we looked at the number of voxels showing the

preference for each category in each group. The one sample T-test revealed a significant number of

selective voxels in each category and in each group (in all cases p<0.001, after FDR correction for

the 12 comparisons: 3 groups * 4 categories). We performed a repeated measure ANOVA to look at

the differences between categories and groups. In SCv we found that a smaller number of voxels

shows selectivity for the human category compared to the others (human vs animal: t(15)=-3.27;

pFDR = 0.03; human vs manipulable: t(15)=2.60; pFDR = 0.08; human vs big: t(15)=-4.16;

pFDR = 0.01). In EBa, instead, there is a lower number of voxels preferring animals compare to non-

living categories (animals vs manipulable: t(15)=-2.47; pFDR = 0.09; animals vs big: t(15)=-3.22;

pFDR = 0.03). Finally, in SCa the number of voxels selective for the big and place category was sig-

nificantly higher than the number of voxels selective for the manipulable category (t(16)=3.27;

pFDR = 0.03). Importantly, when we look at the difference between the 3 groups for each category,

the main difference emerged from the animal category. In this category, the ANOVA revealed a

main effect of group (F(2,46)=3.91; p=0.03). The post hoc comparisons revealed that this difference

was mainly driven by the reduced number of voxels selective for the animal category in EBa com-

pared to SCv (p=0.02).

For the results of the same analysis on the 8 different categories see also Figure 1—figure sup-

plement 1 and Figure 2—figure supplement 1.

Binary MVP classification
Figure 3B represents the results from the average binary classification analyses for each group and

every ROI (FDR corrected). In SCv and in EBa the averaged decoding accuracy was significantly

higher than chance level in both EVC (SCv: DA = 69%; t(15)=6.69, pFDR <0.00001; EBa: DA = 55%;

t(15)=4.48, pFDR = 0.0006) and VOTC (SCv: DA = 71%; t(15)=7.37, pFDR <0.00001; EBa: DA = 57%;

t(15)=8.00, pFDR <0.0001). In the SCa the averaged decoding accuracy was significantly higher than

the chance level in VOTC (DA = 54%; t(16)=4.32, pFDR = 0.0006) but not in EVC (DA = 51%;

t(16)=1.70, pFDR = 0.11). Moreover, independent sample t-tests revealed higher decoding accuracy

values in EBa when compared to SCa in both EVC (t(31)=2.52, pFDR = 0.017) and VOTC (t(31)=2.08,

pFDR = 0.046).

Results from each binary classification analysis (n = 28) for each group are represented in Figure 4

panel A1 for EVC and in panel B1 for VOTC. The p-values for each t-test is reported in the SI-table

3.

Figure 3. Regions of interest and classification results. (A) Representation of the 2 ROIs in one representative

subject’s brain; (B) Binary decoding averaged results in early visual cortex (EVC) and ventral occipito-temporal

cortex (VOTC) for visual stimuli in sighted (green), auditory stimuli in blind (orange) and auditory stimuli in sighted

(blue). ***p<0.001, **p<0.05.
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Figure 4. EVC and VOTC functional profiles. (A1 and B1) Binary decoding bar plots. For each group (SCv: top;

EBa: center; SCa: bottom) the decoding accuracy from the 28 binary decoding analyses are represented. Each

column represents the decoding accuracy value coming from the classification analysis between 2 categories. The

2 dots under each column represent the 2 categories. (A2 and B2) The 28 decoding accuracy values are

represented in the form of a dissimilarity matrix. Each column and each row of the matrix represent one category.

In each square there is the accuracy value coming from the classification analysis of 2 categories. Blue color

means low decoding accuracy values and yellow color means high decoding accuracy values. (A3 and B3) Binary

decoding multidimensional scaling (MDS). The categories have been arranged such that their pairwise distances

Figure 4 continued on next page
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RSA: Correlation between the neural dissimilarity matrices of the 3
groups
We used the accuracy values from the binary classifications to build neural dissimilarity matrices for

each subject in EVC (Figure 4 - Panel A2) and in VOTC (Figure 4 - Panel B2). Then, in every ROI we

computed the correlations between DSMs for each groups’ pair (i.e. SCv-EBa; SCv-SCa; EBa-SCa).

In EVC, the permutation test revealed a significant positive correlation only between the SCv and

the EBa DSMs (mean r = 0.19; pFDR = 0.0002), whereas negative correlation emerged from the cor-

relation between the SCv and SCa DSMs (mean r = –.18; pFDR <0.001) and the correlation between

the SCa and the EBa DSMs (mean r = –0.03; pFDR = 0.18). Moreover, the correlation between SCv

and EBa was significantly higher compared to both the correlation between SCv and SCa (mean

corr. diff = 0.38; pFDR = 0.008) and the correlation between SCa and EBa (mean corr. diff = 0.22;

pFDR = 0.008).

In VOTC, we observed a significant correlation for all the groups’ pairs: SCv and EBa (r = 0.34;

pFDR = 0.0002), SCv and SCa (r = 0.1; pFDR = 0.002), SCa and EBa (r = 0.1; pFDR = 0.002). Moreover,

the correlation between SCv and EBa was significantly higher compared to both the correlation

between SCv and SCa (corr. diff = 0.25; pFDR = 0.008) and the correlation between SCa and EBa

(corr. diff = 0.25; pFDR = 0.008).

Hierarchical clustering analysis on the brain categorical representation
We implemented this analysis to go beyond the magnitude of correlation values and to qualitatively

explore the representational structure of our ROIs in the 3 groups. Using this analysis, we can see

which categories are clustered together in the brain representations according to a specified n num-

ber of clusters (see Figure 5 for detailed results). In VOTC the most striking results are related to

the way the animal category is represented in the EBa group compared to the SCv. In fact, when the

hierarchical clustering was stopped at 2 clusters in SCv, we observed a clear living vs non-living dis-

tinction. In EBa, instead, the division was between humans and non-humans (including all the non-liv-

ing categories plus the animals). When the clusters are 3, we see in SCv a separation into (1) non-

living; (2) human; (3) animals. In EBa, instead, the animals keep in being clustered with non-living, in

a way that the 3 clusters are: (1) Non-living and animals; (2) Human vocalization voices; (3) Human

non-vocalization voices. In the case of the 4 clusters, in both SCv and EBa the additional 4th cluster

is represented by the manipulable-tools category, while in the EBa the animals remain with the rest

of the non-living categories. In the VOTC of SCa group, the structure of the categorical representa-

tion is less straightforward, despite the significant correlation with the DSMs of SCv. For example,

we cannot clearly discern the distinction into living/non-living, or into humans and animals. However,

there are some specific categories such as manipulable-graspable objects, human vocalizations and

environmental sounds that show a segregated representation from the others. When we observe the

clustering in EVC, we see that there is not a clear categorical clustering in this ROI in none of the

groups, with the exception of the SCv in which the human stimuli tend to cluster together.

Finally, the clustering analysis on the behavioral data (see Figure 5) revealed a very similar way of

clustering the categories in the 2 groups of sighted that in the 4 clusters step show exactly the same

structure: (1) Animate categories including animals and humans; (2) Manipulable Objects; (3) Big

mechanical objects; (4) Big Environmental category. In the EBa, instead, we find a different clustering

structure with the animal and the human categories being separated.

Figure 4 continued

approximately reflect response pattern similarities (dissimilarity measure: accuracy values). Categories placed close

together were based on low decoding accuracy values (similar response patterns). Categories arranged far apart

generated high decoding accuracy values (different response patterns). The arrangement is unsupervised: it does

not presuppose any categorical structure (Kriegeskorte et al., 2008b). (A4 and B4) Binary decoding dendrogram.

We performed hierarchical cluster analysis (based on the accuracy values) to assess if EVC (A4) and VOTC (B4)

response patterns form clusters corresponding to natural categories in the 3 groups (SCv: top; EBa: center; SCa:

bottom).
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RSA: correlation with representational low-level/behavioral models
In a behavioral session following the fMRI session, we asked our participants to rate each possible

pair of stimuli in the experiment they took part in (either visual or acoustic) and we built three dissim-

ilarity matrices based on their judgments. A visual exploration of the ratings using the dissimilarity

matrix visualization revealed a clustering of the stimuli into a main living/non-living distinction, with

some sub-clustering such as humans, animals and objects (Figure 6A). The three DSMs were highly

correlated (SCa/EBa: r = 0.85, p<0.001; SCa/SCv: r = 0.95, p<0.001; EBa/SCv: r = 0.89, p<0.001),

revealing a similar way to group the stimuli across the three groups following mostly a categorical

strategy to classify the stimuli. Based on this observation, we used the behavioral matrices as a cate-

gorical/high-level model to contrast with the low-level models built on the physical properties of the

stimuli (HmaxC1 and pitch models, Figure 6A).

In order to better understand the representational content of VOTC and EVC, we computed sec-

ond-order partial correlations between each ROI’s DSM and our representational models (i.e. behav-

ioral and low-level DSMs) for each participant. Figure 6B represents the results for the correlations

between the brain DSMs in the 3 groups and the representational low-level/behavioral models

DSMs (i.e. behavioral, pitch and Hmax-C1 DSMs).

The permutation test revealed that in SCv the EVC’s DSM was significantly correlated with the

Hmax-C1 model (mean r = 0.13, p(one-tailed)FDR = 0.002) but not with the behavioral model (mean

r = 0.03; p(one-tailed)FDR = 0.11). Even though the correlation was numerically higher with the Hmax-

C1 model than with the behavioral model, a paired samples t-test did not reveal a significant differ-

ence between the two (t(15)=1.24, p(one-tailed)FDR = 0.23). The permutation test, showed that VOTC’s

DSM, instead, was significantly positively correlated with the behavioral model (mean r = 0.34;

pFDR <0.001) but negative correlated with the Hmax-C1 model (r = –.07; p(one-tailed)FDR = 0.991.). A

paired samples t-test revealed that the difference between the correlation with the two models was

significant (t(15)=6.71, pFDR <0.001).

In the EBa and SCa groups, EVC’s DSMs were not significantly correlated with neither the behav-

ioral (EBa: mean r = 0.004; p(one-tailed)FDR = 0.47; SCa: mean r = –0.11, p(one-tailed)FDR = 0.98) nor the

Figure 5. Hierarchical clustering of brain data: VOTC and EVC. Hierarchical clustering on the dissimilarity matrices

extracted from EVC (left) and VOTC (right) in the three groups. The clustering was repeated three times for each

DSM, stopping it at 2, 3 and 4 clusters, respectively. This allows to compare the similarities and the differences of

the clusters at the different steps across the groups. In the figure each cluster is represented in a different color.

The first line represents 2 clusters (green and red); the second line represents 3 clusters (green, red and pink);

finally, the third line represents 4 clusters (green, red, pink and light blue).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Hierarchical clustering of the behavioral data.
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Figure 6. Representational similarity analysis (RSA) between brain and representational low-level/behavioral

models. (A) In each ROI we computed the brain dissimilarity matrix (DSM) in every subject based on binary

decoding of our 8 different categories. In the visual experiment (left) we computed the partial correlation between

each subject’s brain DSM and the behavioral DSM from the same group (SCv-Behav.) regressing out the shared

correlation with the HmaxC1 model, and vice versa. In the auditory experiment (right) we computed the partial

correlation between each subject’s brain DSM (in both Early Blind and Sighted Controls) and the behavioral DSM

from the own group (either EBa-Behav. or SCa-Behav.) regressing out the shared correlation with the pitch model,

and vice versa. (B) Results from the Spearman’s correlation between representational low-level/behavioral models

and brain DSMs from both EVC and VOTC. On the left are the results from the visual experiment. Dark green:

partial correlation between SCv brain DSM and behavioral model; Light green: Partial correlation between SCv

brain DSM and HmaxC1 model. On the right are the results from the auditory experiment in both early blind (EBa)

and sighted controls (SCa). Orange: partial correlation between EBa brain DSM and behavioral model; Yellow:

Partial correlation between EBa brain DSM and pitch model. Dark blue: partial correlation between SCa brain

DSM and behavioral model; Light blue: partial correlation between SCa brain DSM and pitch model. For each ROI

and group, the gray background bar represents the reliability of the correlational patterns, which provides an

approximate upper bound of the observable correlations between representational low-level/behavioral models

and neural data (Bracci and Op de Beeck, 2016; Nili et al., 2014). Error bars indicate SEM. ***p<0.001,

**p<.005, *p<0.05. P values are FDR corrected.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Auditory model selection.
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pitch model (EBa: mean r = –0.08; p(one-tailed)FDR = 0.94; SCa: mean r = –0.09, p(one-tailed)FDR = 0.98).

In contrast, the VOTC’s DSMs were significantly correlated with the behavioral model in EBa (mean

r = 0.12, p(one-tailed)FDR = 0.02) but not in SCa (mean r = 0.06; p(one-tailed)FDR = 0.17). Finally the

VOTC’s DSMs were not significantly correlated with the pitch model neither in EBa(mean r = –0.03;

p(one-tailed)FDR = 0.49), nor in SCa(mean r = 0.03; p(one-tailed)FDR = 0.39); In addition, a 2 Groups (EBa/

SCa) X 2 Models (behavioral/pitch) ANOVA in VOTC revealed a significant main effect of Model

(F(1,31)=11.37, p=0.002) and a significant interaction Group X Model (F(1,31)=4.03, p=0.05), whereas

the main effect of Group (F(1,31)=2.38
�4, p=0.98), was non-significant. A Bonferroni post-hoc test on

the main effect of Model confirmed that the correlation was significantly higher for the behavioral

model compared to the pitch model (t = 3.18, p=0.003). However, the Bonferroni post-hoc test on

the interaction Group*Model revealed that the difference between behavioral and pitch models was

significant only in EBa (t = 3.8, p=0.004).

For completeness of results, we report here also the correlation results before regressing out the

partial correlation of the behavioral/low-level models from each other. In ECV, the mean correlation

with the behavioral model was: r = 0.2 in SCv, r = 0.02 in EBa and r=–0.07 in SCa. In ECV, the mean

correlation with the low level/model was: r = 0.21 in SCv (HmaxC1), r=–0.09 in EBa (pitch) and r = –

0.06 in SCa (pitch). In VOTC, the mean correlation with the behavioral model was: r = 0.42 in SCv,

r = 0.12 in EBa and r = 0.04 in SCa. In VOTC, the mean correlation with the low level/model was:

r = 0.15 in SCv (HmaxC1), r = –0.08 in EBa (pitch) and r = 0.005 in SCa (pitch).

RSA: Inter-subjects correlation
We run this analysis to understand how variable was the brain representation in VOTC across sub-

jects belonging either to the same group or to different groups. Since we have 3 groups, this analy-

sis resulted in 6 different correlation values: 3 values for the 3 within group correlation conditions

(SCv; EBa; SCa) and 3 values for the 3 between groups correlation conditions (i.e. SCv-EBa; SCv-

SCa; EBa-SCa). Results are represented in Figure 7.

The permutation test revealed that the correlation between subjects’ DSMs in the within group

condition was significant in SCv (r = 0.42; pFDR <0.001) and EBa (r = 0.10; pFDR <0.001), whereas it

was not significant in SCa (r = –.03; pFDR = 0.98). Moreover, the correlation between subjects’ DSMs

was significant in all the three between groups conditions (SCv-EBa: r = 0.17, pFDR <0.001; SCv-SCa:

r = 0.04, pFDR = 0.002; EBa-SCa: r = 0.02; pFDR = 0.04). When we ranked the correlations values (Fig-

ure 7) we observed that the highest inter-subject correlation is the within SCv group condition,

which was significantly higher compared to all the other five conditions. It was followed by inter-sub-

ject correlation between SCv and EBa group and the within EBa group correlation. Interestingly,

both the between groups SCv-EBa and the within group EBa correlations were significantly higher

compared to the last 3 inter-subjects correlation’s values (between SCv-SCa; between EBa-SCa;

within SCa).

Representational connectivity analysis
Figure 8 represents the results from the representational connectivity analysis in VOTC. The permu-

tation analysis highlighted that the representational connectivity profile of VOTC with the rest of the

brain is significantly correlated between all pairs of groups (SCv-EBa: mean r = 0.18, pFDR = 0.001;

SCv-SCa: mean r = 0.14, pFDR <0.001; EBa-SCa: mean r = 0.16, pFDR <0.001), and with no difference

between groups’ pairs.

We performed the same analysis also in EVC. In this case the permutation analysis revealed a sig-

nificant correlation only between the representational connectivity profile of the two groups of

sighted: SCv and SCa (mean r = 0.17, pFDR <0.001), whereas the correlation between the EBa was

not significant neither with SCv (mean r = 0.06, pFDR = 0.12) nor with SCa (mean r = 0.06,

pFDR = 0.11). Moreover, the correlation between SCv and SCa was significantly higher than both, the

correlation between SCv and EBa (mean diff = 0.11, pFDR = 0.01) and the correlation between SCa

and EBa (mean diff = 0.11, pFDR = 0.01).

Discussion
In our study, we demonstrate that VOTC reliably encodes the categorical membership of sounds

from eight different categories in sighted and blind people, using a topography (Figure 1B),
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representational format (Figure 4) and a representational connectivity profile (Figure 8) partially sim-

ilar to the one observed in response to images of similar categories in vision.

Previous studies using linguistic stimuli had already suggested that VOTC may actually represent

categorical information in a more abstracted fashion than previously thought (Handjaras et al.,

2016; Borghesani et al., 2016; Striem-Amit et al., 2018b; Peelen and Downing, 2017). However,

even if the use of words is very useful in the investigation of pre-existing representation of concepts

(Martin et al., 2017), it prevents the investigation of a bottom-up perceptual processing. By con-

trast, in our study we used sensory-related non-linguistic stimuli (i.e. sounds) in order to investigate

both the sensory (acoustic) and categorical nature of the representation implemented in VOTC. To

the limit of our knowledge, only one recent study investigated the macroscopic functional organiza-

tion of VOTC during categorical processing of auditory and visual stimuli in sighted and in blind indi-

viduals (van den Hurk et al., 2017). They found that it is possible to predict the global large-scale

distributed pattern of activity generated by different categories presented visually in sighted using

the pattern of activity generated by the same categories presented acoustically in early blind.

Figure 7. VOTC Inter-subject correlation within and between groups. Upper panel represents the correlation

matrix between the VOTC brain DSM of each subject with all the other subjects (from the same group and from

different groups). The mean correlation of each within- and between-groups combination is reported in the

bottom panel (bar graphs). The straight line ending with a square represents the average of the correlation

between subjects from the same group (i.e. within groups conditions: SCv, EBa, SCa), the dotted line ending with

the circle represents the average of the correlation between subjects from different groups (i.e. between groups

conditions: SCv-EBa/SCv-SCa/EBa SCa). The mean correlations are ranked from the higher to the lower inter-

subject correlation values.
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Relying on a different analytical stream, focusing on representational matrices extracted from pair-

wise decoding of our eight categories, our study confirms and extends those findings by showing

that VOTC reliably encodes sound categories in blind people using a representational structure rela-

tively similar to the one found in vision.

Our study goes beyond previous results in at least six significant ways. First, our results demon-

strate that VOTC shows categorical responses to sounds in the sighted and the blind in a represen-

tational format partially similar to the one elicited by images of the same categories in sighted

people (see Figure 1B). Observation of a similar categorical representational structure in VOTC for

sounds and images in sighted people is crucial to support the idea that the intrinsic categorical orga-

nization of VOTC might be partially independent from vision even in sighted and that such intrinsic

multisensory functional scaffolding may constrain the way crossmodal plasticity expresses in early

blind people. Second, we observed that blind people show higher decoding accuracies and higher

inter-subject consistency in the representation of auditory categories, and that the representational

structure of visual categories in sighted was significantly closer to the structure of the auditory cate-

gories in blind than in sighted group (see Figure 1B, Figure 3, Figure 4B, Figure 7). This points to

the idea that in absence of feed-forward visual input, VOTC increases its intrinsic representation of

non-visual information. Third, VOTC shows similar large-scale representational connectivity profiles

when processing images in sighted and sounds in sighted and blind people (see Figure 8). This

Figure 8. Representational connectivity. (A) Representation of the z-normalized correlation values between the

dissimilarity matrix of the three VOTC seeds (left: Fusiform gyrus, center: Parahippocampal gyrus, Right: Infero-

Temporal cortex) and the dissimilarity matrix of 27 parcels covering the rest of the cortex in the three groups (top:

SCv, central: EBa, bottom: SCa). Blue color represents low correlation with the ROI seed; yellow color represents

high correlation with the ROI seed. (B) The normalized correlation values are represented in format of one matrix

for each group. This connectivity profile is correlated between groups. SCv: sighted control-vision; EBa: early

blind-audition; SCa: sighted control-audition.
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result provides strong support to the general hypothesis that the functional tuning of a region is

determined by large-scale connectivity patterns with regions involved in similar coding strategies

(Behrens and Sporns, 2012; Mahon and Caramazza, 2011; Passingham et al., 2002). Fourth, our

design allowed us to investigate which dimension of our stimuli, either categorical membership or

acoustic properties, may determine the response properties of VOTC to sounds. By harnessing the

opportunities provided by representational similarity analysis, we demonstrate that categorical mem-

bership is the main factor that predicts the representational structure of sounds in VOTC in blind

people (see Figure 6), rather than lower-level acoustical attributes of sounds that are at least par-

tially at the basis of category selectivity in the temporal cortex (Moerel et al., 2012). These results

elucidate for the first time the computational characteristics that determine the categorical response

for sounds in VOTC. Fifth, we provided a qualitative exploration of the structure of the categorical

representation in the VOTC. The between-groups Jaccard similarity analysis revealed a domain–by–

modality interaction (see Figure 2C), with the big objects and places category showing an higher

degree of similarity between the auditory and visual representations compared to the other catego-

ries. In addition, both, the hierarchical clustering and the within-group Jaccard similarity analysis

highlighted a domain-by-sensory experience interaction (see Figure 5 and Figure 2B), with the ani-

mal category represented differently in blind compared to sighted subjects (Bi et al., 2016;

Wang et al., 2015). Finally, our study discloses that categorical membership is encoded in the EVC

of blind people only, using a representational format that does not relate neither to the acoustic nor

to the categorical structure of our stimuli, suggesting different mechanisms of reorganization in this

posterior occipital region.

Different visual categories elicit distinct distributed responses in VOTC using a remarkable topo-

graphic consistency across individuals (Julian et al., 2012; Kanwisher, 2010). It was suggested that

regular visual properties specific to each category like retinotopic eccentricity biases (Gomez et al.,

2019; Malach et al., 2002), curvature (Nasr et al., 2014) or spatial frequencies (Rajimehr et al.,

2011) could drive the development of categorical response in VOTC for visual information

(Andrews et al., 2010; Baldassi et al., 2013; Bracci et al., 2018; Rice et al., 2014; see Op de

Beeck et al., 2019 for a recent review on the emergence of category selectivity in VOTC). For

instance, the parahippocampal place area (PPA) and the fusiform face area (FFA) receive dominant

inputs from downstream regions of the visual system with differential selectivity for high vs low spa-

tial frequencies and peripheral vs. foveal inputs, causing them to respond differentially to place and

face stimuli (Levy et al., 2001). These biases for specific visual attributes could be present at birth

and represent a proto-organization driving the development of the categorical responses of VOTC

based on experience (Arcaro and Livingstone, 2017; Gomez et al., 2019). For instance, a proto-

eccentricity map is evident early in development (Arcaro and Livingstone, 2017) and monkeys

trained early in life to discriminate different categories varying in their curvilinearity/rectilinearity

develop distinct and consistent functional clusters for these categories (Srihasam et al., 2014). Fur-

ther, adults who had intensive visual experience with Pokémon early in life demonstrate distinct dis-

tributed cortical responses to this trained visual category with a systematic location supposed to be

based on retinal eccentricity (Gomez et al., 2019).

Although our results by no means disprove the observations that inherent visual biases can influ-

ence the development of the functional topography of high-level vision (Gomez et al., 2019;

Hasson et al., 2002; Nasr et al., 2014), our data however suggest that category membership inde-

pendently of visual attributes is also a key developmental factor that determines the consistent func-

tional topography of the VOTC. Our study demonstrates that VOTC responds to sounds using a

similar distributed functional profile to the one found in response to vision, even in case of people

that have never had visual experience.

By orthogonalizing category membership and visual features of visual stimuli, previous studies

reported a residual categorical effect in VOTC, highlighting how some of the variance in the neural

data of VOTC might be explained by high-level categorical properties of the stimuli even when the

contribution of the basic low-level features has been controlled for (Bracci and Op de Beeck, 2016;

Kaiser et al., 2016; Proklova et al., 2016). Category-selectivity has also been observed in VOTC

during semantic tasks when word stimuli were used, suggesting an involvement of the occipito-tem-

poral cortex in the retrieval of category-specific conceptual information (Handjaras et al., 2016;

Borghesani et al., 2016; Peelen and Downing, 2017). Moreover, previous research has shown that

learning to associate semantic features (e.g., ‘floats’) and spatial contextual associations (e.g., ‘found
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in gardens’) with novel objects influences VOTC representations, such that objects with contextual

connections exhibited higher pattern similarity after learning in association with a reduction in pat-

tern information about the object’s visual features (Clarke et al., 2016).

Even if we cannot fully exclude that the processing of auditory information in the VOTC of sighted

people could be the by-product of the visual imagery triggered by the non-visual stimulation

(Cichy et al., 2012; Kosslyn et al., 1995; Reddy et al., 2010; Slotnick et al., 2005; Stokes et al.,

2009), we find it unlikely. First, we purposely included two separate groups of sighted people, each

one performing the experiment in one modality only, in order to minimize the influence of having

heard or seen the stimuli in the other modality in the context of the experiment. Also, we used a fast

event-related design that restricted the time window to build a visual image of the actual sound

since the next sound was presented quickly after (Logie, 1989). Moreover, we would expect that

visual imagery would also triggers information to be processed in posterior occipital regions

(Kosslyn et al., 1999). Instead, we found that EVC does not discriminate the different sounds in the

sighted group (Figure 3B and Figure 4A). Finally, to further test the visual imagery hypothesis, we

correlated the brain representational space of EVC in SCa with low-level visual model (i.e. HmaxC1).

A significant positive correlation between the two would be in support of the presence of visual

imagery mechanism when sighted people hear sounds of categories. We found, instead, a non-sig-

nificant negative correlation, making the visual imagery hypothesis further unlikely to explain our

results.

Comparing blind and sighted individuals arguably provides the strongest evidence for the

hypothesis that category-selective regions traditionally considered to be ‘high-level visual regions’

can develop independently of visual experience. Interestingly, we found that the decoding accuracy

for the auditory categories in VOTC is significantly higher in the early blind compared to the sighted

control group (Figure 3B). In addition, the correlation between the topographic distribution of cate-

gorical response observed in VOTC was stronger in blind versus sighted people (Figure 1B). More-

over, the representational structure of visual categories in sighted was significantly closer to the

structure of the auditory categories in blind than in sighted (Figure 4A2). Finally, the representation

of the auditory stimuli in VOTC is more similar between blind than between sighted subjects (Fig-

ure 7), showing an increased inter-subject stability of the representation in case of early visual depri-

vation. All together, these results not only demonstrate that a categorical organization similar to the

one found in vision could emerge in VOTC in absence of visual experience, but also that such cate-

gorical response to sounds is actually enhanced and more stable in congenitally blind people.

Several studies have shown that in absence of vision, the occipital cortex enhances its response

to non-visual information processing (Collignon et al., 2012; Collignon et al., 2011; Sadato et al.,

1998). However, people debate on the mechanistic principles guiding the expression of this cross-

modal plasticity. For instance, it was suggested that early visual deprivation changes the computa-

tional nature of the occipital cortex which would reorganize itself for higher-level functions, distant

from the ones typically implemented for visual stimuli in the same region (Bedny, 2017). In contrast

with this view, our results demonstrate that the expression of crossmodal plasticity, at least in VOTC

(see differences in EVC below), is constrained by the inherent categorical structure endowed in this

region. First, we highlighted remarkably similar functional profile of VOTC for visual and auditory

stimuli in sighted and in early blind individuals (Figure 4B). In addition, we showed that VOTC is

encoding a similar categorical dimension of the stimuli across different inputs of presentation and

different visual experiences (Figure 6B). In support of such idea, we recently demonstrated that the

involvement of right dorsal occipital region for arithmetic processing in blind people actually relates

to the intrinsic ‘spatial’ nature of these regions, a process involved in specific arithmetic computation

(e.g. subtraction but not multiplication) (Crollen et al., 2019). Similarly, the involvement of VOTC

during ‘language’ as observed in previous studies (Bedny et al., 2011; Burton et al., 2006;

Kim et al., 2017; Lane et al., 2015; Röder et al., 2002) may relate to the fact that some level of

representation involved in language (e.g. semantic) can be intrinsically encoded in VOTC as sup-

ported by the current results (Huth et al., 2016). In fact, we suggest that VOTC regions have innate

predispositions relevant to important categorical distinctions that cause category-selective patches

to emerge regardless of sensory experience. Why would the ‘visual’ system embed representation

of categories independently of their perceptual features? One argument might be that items from a

particular broad category (e.g. inanimate) are so diverse that they may not share systematic percep-

tual features and therefore a higher-level of representation, partially abstracted from vision, might
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prove important. Indeed, we gather evidence in support of an extension of the intrinsic categorical

organization of VOTC that is already partially independent from vision in sighted. This finding repre-

sents an important step forward in understanding how experience and intrinsic constraints interact in

shaping the functional properties of VOTC. An intriguing possibility raised by our results is that the

crossmodal plasticity observed in early blind individuals may actually serve to maintain the functional

homeostasis of occipital regions.

What would be the mechanism driving the preservation of the categorical organization of VOTC

in case of congenital blindness? It is thought that the specific topographic location of a selective

brain functions is constrained by an innate profile of functional and structural connections with extrin-

sic brain regions (Passingham et al., 2002). Since the main fiber tracts are already present in full-

term human neonates (Dubois et al., 2014; Dubois et al., 2016; Kennedy et al., 1999;

Kostović and Judaš, 2010; Marı́n-Padilla, 2011; Takahashi et al., 2011), such initial connectome

may at least partly drive the functional development of a specific area. Supporting this hypothesis,

the visual word form area (VWFA) in VOTC (McCandliss et al., 2003) shows robust and specific ana-

tomical connectivity to EVC and to frontotemporal language networks and this connectivity finger-

print can predict the location of VWFA even before a child learn to read (Saygin et al., 2016).

Similarly, anatomical connectivity profile can predict the location of the fusiform face area (FFA)

(Saygin et al., 2012). In addition to intra-occipital connections, FFA has a direct structural connec-

tion with the temporal voice area (TVA) in the superior temporal sulcus (Benetti et al., 2018;

Blank et al., 2011) thought to support similar computations applied on faces and voices as well as

their integration (von Kriegstein et al., 2005). Interestingly, recent studies suggested that the main-

tenance of those selective structural connections between TVA and FFA explains the preferential

recruitment of TVA for face processing in congenitally deaf people (Benetti et al., 2018;

Benetti et al., 2017). This TVA-FFA connectivity may explain why voices preferentially map slightly

more lateral to the mid-fusiform sulcus (Figure 1B). Similarly, sounds of big objects or natural scenes

preferentially recruit more mesial VOTC regions (Figure 1B), overlapping with the parahippocampal

place area, potentially due to the preserved pattern of structural connectivity of those regions in

blind people (Wang et al., 2017). The existence of these innate large-scale brain connections that

are specific for each region supporting separate categorical domain may provide the structural scaf-

folding on which crossmodal inputs capitalize to reach VOTC in both sighted and blind people,

potentially through feed-back connections. Indeed, it has been shown that the main white matter

tracks including those involving occipital regions are not significantly different between blind and

sighted individuals (Shimony et al., 2006). In EB, the absence of competitive visual inputs typically

coming from feed-forward inputs from EVC may actually trigger an enhanced weighting of those

feed-back inter-modal connection leading to an extension of selective categorical response to

sounds in VOTC, as observed in the current study. Our results provide crucial support for this ‘biased

connectivity’ hypothesis (Hannagan et al., 2015; Mahon and Caramazza, 2011) showing that VOTC

subregions are part of a large-scale functional network representing categorical information in a for-

mat that is at least partially independent from the modality of the stimuli presentation and from the

visual experience.

Even though the categorical representation of VOTC appears, to a certain degree, immune to

input modality and visual experience, there are also several differences emerging from the categori-

cal representation of sight and sounds in the sighted and blind. Previous studies already suggested

that intrinsic characteristics of objects belonging to different categories might drive different repre-

sentations in the VOTC of the blind (Bi et al., 2016; Büchel, 2003; Wang et al., 2015). In line with

this idea, the between-groups Jaccard similarity analysis (see Figure 2C) revealed a domain–by–

modality interaction, with the big objects and places categories showing the highest degree of simi-

larity between the vision and audition (both in blind and in sighted). In contrast, the lowest topo-

graphical consistency between groups was found for the animal category. We found that in the early

blind group the number of voxels selective for animals is reduced compared to the other categories

(see Figure 2A), suggesting that the animal category is under represented in the VOTC of early

blind. Our hierarchical clustering analyses (see Figure 5 and Figure 5—figure supplement 1) also

highlight a reduced animate/inanimate division in the EBa group, with the animal and the humans

categories not clustering together and the animals being represented more like tools or big objects

in the EBa. Interestingly, this is the case in both the categorical representation of VOTC (Figure 5)

and the behavioral evaluation of our stimuli made by blind individuals (Figure 5—figure supplement
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1). An explanation for this effect could be the different way blind and sighted individuals might have

in perceiving and interacting with animals. In fact, if we exclude pets (only 1 out of the six animals

we included in this study), sighted individuals normally perceive the animacy of animals (such as bird,

donkey, horse etc.) mostly throughout vision (either in real life or in pictures/movies). Blind people,

instead, do normally learn the peculiar shape of each animal touching static miniature models of

them. Moreover, when blind people hear the sounds of these animals without seeing them, they

might combine these sounds with the rest of the environmental sounds, and this is indeed what we

see in the behavioral ratings, in which only blind subjects cluster together animals and big environ-

mental sounds. These results therefore reveal that the modality of presentation and/or the visual

experience do affect the qualitative structure of the categorical representation in VOTC, and this

effect is stronger for some categories (i.e. animals) compared to others (i.e. inanimate).

A different profile emerged from EVC. First, sound categories could be decoded in the EVC of

EB (Figure 3B) but not of the SC. In addition, the representational structure of EVC for sounds corre-

lated to the one found in vision only in EB (Figure 4A2). However, neither the categorical member-

ship nor the acoustic attributes of sounds correlated with the representational structure found in the

EVC of EB (Figure 6B). A possible explanation for this result is that the posterior part of the occipital

cortex in EB is the region that distances itself the most from the native computation it typically

implements (Bi et al., 2016; Wang et al., 2015). In support of this possibility, the representational

connectivity profile of EVC in EBa did not show any similarity with the one of sighted (neither SCv

nor SCa). Because this area has a native computation that does not easily transfer to another sensory

modality (i.e. low-level vision), it may therefore rewire itself for distant functions (Bedny, 2017).

Some studies, for instance reported an involvement of EVC in high-level linguistic or memory tasks

(Van Ackeren et al., 2018; Amedi et al., 2003; Bedny et al., 2011). However, as demonstrated

here, the categorical membership of sounds, which may be a proxy for semantic representation,

does not explain the representational structure of EVC in our study. It would be interesting to inves-

tigate whether models based on linguistic properties such as word frequency or distributional statis-

tic in language corpus (Baroni et al., 2009) would, at least partially, explain the enhanced

information that we found in EVC of EB. However, our design does not allow us to implement this

analysis because the language-statistic DSM based on our stimuli space highly correlate with cate-

gorical models. Future studies should investigate this point using a set of stimuli in which the cate-

gorical and the linguistic dimensions should be orthogonalized. A further limitation of our study is

the limited number of brain regions that we investigated. Since the experimental design and analy-

ses we implemented were a priori focused on VOTC (target region) and EVC (as a control region), it

is possible that other brain areas might show either similar or different representation across modali-

ties and groups. In particular, since the brain is a highly interconnected organ (de Pasquale et al.,

2018), it is unlikely that early visual deprivation would affect exclusively a portion of the occipital cor-

tex leaving the rest of the functional network unaffected. It would be of particular interest to investi-

gate whether the reorganization of the visual cortex occurs together with changes in brain regions

coding for the remaining senses, such as temporal regions typically coding for auditory

stimuli (Mattioni et al., 2018).

Materials and methods

Participants
Thirty-four participants completed the auditory version of the fMRI study: 17 early blinds (EBa; 10F)

and 17 sighted controls (SCa; 6F). An additional group of 16 sighted participants (SCv; 8F) per-

formed the visual version of the fMRI experiment. All the blind participants lost sight at birth or

before 4 years of age and all of them reported not having visual memories and never used vision

functionally (see Supplementary file 1). The three groups were age (range 20–67 years, mean ± SD:

33.29 ± 10.24 for EBa subjects, respectively 23–63, 34.12 ± 8.69 for SCa subjects, and 23–51,

30.88 ± 7.24 for SCv subjects) and gender (c2 (2,50)=1.92, p=0.38) matched. One blind subject per-

formed only 2 out of the 5 runs in the fMRI due to claustrophobia; because of that we excluded his

data. All subjects were blindfolded during the auditory task and were instructed to keep the eyes

closed during the entire duration of the experiment. Participants received monetary compensation
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for their participation. The ethical committee of the University of Trento approved this study (proto-

col 2014–007) and participants gave their informed consent before participation.

Stimuli
We decided to use sounds and images, instead of words, because we wanted to access and model

the bottom-up cascade of sensory processing starting from the low-level sensory processing up to

the more conceptual level. This methodological decision was crucial in order to assess what level of

sound representation is implemented in VOTC of blind and sighted individuals.

A preliminary experiment was carried out in order to select the auditory stimuli. Ten participants

who did not participate in the main experiment were presented with 4 different versions of 80 acous-

tic stimuli from 8 different categories (human vocalization, human non-vocalization, birds, mammals,

tools, graspable objects, environmental scenes, big mechanical objects). We asked the participants

to name the sound and then to rate, from 1 to 7, how representative the sound was of its category.

We selected only the stimuli that were recognized with at least 80% accuracy, and among those, we

choose for each category the 3 most representative sounds for a total of 24 acoustical stimuli in the

final set (see Supplementary file 1). All sounds were collected from the database Freesound

(https://freesound.org), except for the human vocalizations that were recorded in the lab. The

sounds were edited and analysed using the softwares Audacity (http://www.audacityteam.org) and

Praat (http://www.fon.hum.uva.nl/praat/). Each mono-sound (44,100 Hz sampling rate) was 2 s long

(100msec fade in/out) and amplitude-normalized using root mean square (RMS) method.

The final acoustic stimulus set included 24 sounds from 8 different categories (human vocalization,

human non-vocalization, birds, mammals, tools, graspable objects, environmental scenes, big

mechanical objects) that could be reduced to 4 superordinate categories (human, animals, manipula-

ble objects, big objects/places) (see Figure 1 and Supplementary file 1).

We created a visual version of the stimuli set. The images for the visual experiment were colored

pictures collected from Internet and edited using GIMP (https://www.gimp.org). Images were placed

on a gray (129 RGB) 400 � 400 pixels background.

Procedure
The experimental session was divided into two parts: first the subjects underwent the fMRI experi-

ment and then they performed a behavioral rating judgment task on the same stimuli used in the

fMRI experiment.

Similarity rating
The behavioral experiment aimed to create individual behavioral dissimilarity matrices to understand

how the participants perceived the similarity of our stimulus space. Due to practical constraints, only

a subset of our participants underwent the behavioral experiment (15 EBa, 11 SCa, and 9 SCv). We

created each possible pair from the 24 stimuli set leading to a total of 276 pairs of stimuli. In the

auditory experiment, participants heard each sound of a pair sequentially and were asked to judge

from 1 to 7 how similar the two stimuli producing these sounds were. In the visual experiment, we

presented each pair of stimuli on a screen to the participants and we asked them to judge from 1 to

7 how similar the two stimuli were. Since their rating was strongly based on the categorical features

of the stimuli, we used the data from the behavioral experiment to build the categorical models for

the representational similarity analysis (see the section ‘Representational similarity analysis: correla-

tion with representational low-level/behavioral models’).

fMRI experiment
Each participant took part in only one experiment, either in the auditory or in the visual version. We

decided to include two separate groups of sighted people, one for each modality, for two crucial

reasons. First, we wanted to limit as much as possible the possibility of triggering mental imagery

from one modality to the other. Second, since cross-group comparisons of representational dissimi-

larity analyses represent a core component of our analyses stream, we wanted to ensure a cross-

group variance comparable between the blind versus the sighted and the sighted in audition versus

the sighted in vision.

The procedure for the two experiments was highly similar (Figure 1A).
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Before entering the scanner, all the stimuli (either auditory or visual) were presented to each par-

ticipant to ensure perfect recognition. In the fMRI experiment each trial consisted of the same stimu-

lus repeated twice. Rarely (8% of the occurrences), a trial was made up of two different consecutive

stimuli (catch trials). Only in this case participants were asked to press a key with the right index fin-

ger if the second stimulus belonged to the living category and with their right middle finger if the

second stimulus belonged to the non-living category. This procedure ensured that the participants

attended and processed the stimuli. In the auditory experiment, each pair of stimuli lasted 4 s (2 s

per stimulus) and the inter-stimulus interval between one pair and the next was 2 s long for a total of

6 s for each trial (Figure 1A). In the visual experiment, each pair of stimuli lasted 2 s (1 s per stimulus)

and the inter-stimulus interval between one pair and the next was 2 s long for a total of 4 s for each

trial (Figure 1A).

The use of a ‘‘quick’’ event-related fMRI paradigm balances the need for separable hemodynamic

responses and the need for presenting many stimuli in the limited time-span of the fMRI experiment.

Within both the auditory and the visual fMRI sessions, participants underwent five runs. Each run

contained 3 repetitions of each of the 24 stimuli, eight catch trials and two 20s-long rest periods

(one in the middle and another at the end of the run). The total duration of each run was 8 min and

40 s for the auditory experiment and 6 min for the visual experiment. For each run, the presentation

of trials was pseudo-randomized: two stimuli from the same category were never presented in sub-

sequent trials. The stimulus delivery was controlled using the Psychophysics toolbox implemented in

Matlab R2012a (The MathWorks).

fMRI data acquisition and preprocessing
We acquired our data on a 4T Bruker Biospin MedSpec equipped with an eight-channel birdcage

head coil. Functional images were acquired with a T2*-weighted gradient-recalled echo-planar imag-

ing (EPI) sequence (TR, 2000 ms; TE, 28 ms; flip angle, 73˚; resolution, 3 � 3 mm3; 30 transverses sli-

ces in interleaved ascending order; 3 mm slice thickness; field of view (FoV) 192 � 192 mm2). The

four initial scans were discarded for steady-state magnetization. Before each EPI run, we performed

an additional scan to measure the point-spread function (PSF) of the acquired sequence, including

fat saturation, which served for distortion correction that is expected with high-field imaging.

A structural T1-weighted 3D magnetization prepared rapid gradient echo sequence was also

acquired for each subject (MP-RAGE; voxel size 1 � 1�1 mm3; GRAPPA acquisition with an accelera-

tion factor of 2; TR 2700 ms; TE 4,18 ms; TI (inversion time) 1020 ms; FoV 256 mm; 176 slices).

To correct for distortions in geometry and intensity in the EPI images, we applied distortion cor-

rection on the basis of the PSF data acquired before the EPI scans (Zeng and Constable, 2002).

Raw functional images were pre-processed and analyzed with SPM8 (Welcome Trust Centre for Neu-

roimaging London, UK (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) implemented in MATLAB

R2013b (MathWorks). Pre-processing included slice-timing correction using the middle slice as refer-

ence, the application of temporally high-pass filtered at 128 Hz and motion correction.

Regions of interest
Since we were interested in the brain representation of different categories we decided to focus on

the ventro-occipito temporal cortex as a whole. This region is well known to contain several distinct

macroscopic brain regions known to prefer a specific category of visual objects including faces, pla-

ces, body parts, small artificial objects, etc. (Kanwisher, 2010). We decided to focus our analyses on

a full mask of VOTC, and not in specific sub-parcels because we were interested in looking at the

categorical representation across categories and not at the preference of a specific category com-

pared to the others. Our study therefore builds upon the paradigm shift of viewing VOTC as a dis-

tributed categorical system rather than a sum of isolated functionally specific areas, which reframes

how we should expect to understand those areas (Haxby et al., 2001). In fact, our main aim was to

investigate how sensory input channel and visual experience impact on the general representation of

different categories in the brain. Looking at one specific category-selective region at time would not

allow us to address this specific question, since we would expect an imbalanced representation of

the preferred category compared to the others. Indeed, to tackle our question, we need to observe

the distributed representation of the categories over the entire ventral occipito-temporal cortex

(Haxby et al., 2001). This approach has already been validated by previous studies that investigated
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the categorical representation in the ventral-occipito temporal cortex, using a wide VOTC mask,

such as van den Hurk et al. (2017); Kriegeskorte et al. (2008b); Wang et al. (2015). We also

added the early visual cortex (EVC) as a control node. We decided to work in a structurally and indi-

vidually defined mask of VOTC using the Desikan-Killiany atlas (Desikan et al., 2006) implemented

in FreeSurfer (http://surfer.nmr.mgh.harvard.edu). Six ROIs were selected in each hemisphere: Peri-

calcarine, Cuneus and Lingual areas were combined to define the early visual cortex (EVC) ROI; Fusi-

form, Parahippocampal and Infero-Temporal areas were combined to define the ventral occipito-

temporal (VOTC) ROI. Then, we combined these areas in order to obtain one bilateral EVC ROI and

one bilateral VOTC ROI (Figure 3A).

Our strategy to work on a limited number of relatively large brain parcels has the advantage to

minimize unstable decoding results collected from small regions (Norman et al., 2006) and reduce

multiple comparison problems intrinsic to neuroimaging studies (Etzel et al., 2013). All analyses,

except for the topographical selectivity map (see below), were carried out in subject space for

enhanced anatomico-functional precision and to avoid spatial normalization across subjects.

General linear model
The pre-processed images for each participant were analyzed using a general linear model (GLM).

For each of the five runs, we included 32 regressors: 24 regressors of interest (each stimulus), 1

regressor of no-interest for the target stimulus, six head-motion regressors of no-interest and one

constant. From the GLM analysis, we obtained a b-image for each stimulus (i.e. 24 sounds) in each

run, for a total of 120 (24 stimuli x five runs) beta maps.

Topographical selectivity map
For this analysis, we needed all participants to be coregistered and normalized in a common volu-

metric space. To achieve maximal accuracy, we relied on the DARTEL (Diffeomorphic Anatomical

Registration Through Exponentiated Lie Algebra; Ashburner, 2007) toolbox. DARTEL normalization

takes the gray and white matter templates from each subject to create an averaged template based

on our own sample that will be used for the normalization. The creation of a study-specific template

using DARTEL was performed to reduce deformation errors that are more likely to arise when regis-

tering single subject images to an unusually shaped template (Ashburner, 2007). This is particularly

relevant when comparing blind and sighted subjects given that blindness is associated with signifi-

cant changes in the structure of the brain itself, particularly within the occipital cortex (Dormal et al.,

2016; Jiang et al., 2009; Pan et al., 2007; Park et al., 2009).

To create the topographical selectivity map (Figure 1B), we extracted in each participant the b-

value for each of our four main conditions (animals, humans, manipulable objects and places) from

each voxel inside the VOTC mask and we assigned to each voxel the condition producing the high-

est b-value (winner takes all). This analysis resulted in specific clusters of voxels that spatially distin-

guish themselves from their surround in terms of selectivity for a particular condition (van den Hurk

et al., 2017; Striem-Amit et al., 2018a).

Finally, to compare how similar are the topographical selectivity maps in the three groups we fol-

lowed, for each pair of groups (i.e. 1.SCv-EBa; 2.SCv-SCa; 3.EBa-SCa) these steps: (1) We computed

the Spearman’s correlation between the topographical selectivity map of each subject from Group

one with the averaged selectivity map of Group two and we compute the mean of these values. (2)

We computed the Spearman’s correlation between the topographical selectivity map of each subject

from Group two with the averaged selectivity map of Group one and we computed the mean of

these values. (3) We averaged the two mean values obtained from step 1 and step 2, in order to

have one mean value for each group comparison (see the section ‘Statistical analyses’ for details

about the assessment of statistical differences).

We ran this analysis using the four (Figure 1B) and the eight categories (see Figure 1—figure

supplement 1) and both analyses lead to almost identical results. We decided to represent the data

of the four main categories for simpler visualization of the main effect (topographical overlap across

modalities and groups).

In order to go beyond the magnitude of the correlation between the topographical selectivity

maps and to explore the quality of the (dis)similarity between the topographical maps of our sub-

jects and groups we computed the Jaccard index between them. The Jaccard similarity coefficient is
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a statistic used for measuring the similarity and diversity of sample sets (Devereux et al., 2013;

Xu et al., 2018). The Jaccard coefficient is defined as the size of the intersection divided by the size

of the union of the sample sets. This value is 0 when the two sets are disjoint, 1 when they are equal,

and between 0 and 1 otherwise.

First, we looked at the consistency of the topographical representation of the categories across

subjects within the same group. For this within group analysis we computed the Jaccard similarity

between the topographical selectivity map of each subject and the mean topographical map of his

own group. This analysis produces 4 Jaccard similarity indices (one for each of the main category:

(1) animals, (2) humans, (3) manipulable objects and (4) big objects and places) for each group (see

Figure 2B). Low values for one category within a group mean that the topographical representation

of that category varies a lot across subjects of that group. Statistical significance of the Jaccard simi-

larity index within groups was assessed using parametric statistics: One sample t-tests to assess the

difference against zero and a repeated measure ANOVA (4 categories * 3 groups) to compare the

different categories and groups.

In addition, we computed the Jaccard similarity index for each category, between the topograph-

ical map of each blind and sighted subject in the auditory experiment (EBa and SCa) with the aver-

aged topographical selectivity map from the sighted in the visual experiment (SCv; see Figure 2C

for the results). In more practical terms, this means that we have 4 Jaccard similarity indices (one for

each of the main category: (1) animal, (2) human, (3) manipulable objects and (4) big objects and pla-

ces) for each of the two groups’ pairs: EBa-SCv and SCa-SCv. These values can help in explore more

in detail the similarity and differences among the topographical representations of our categories

when they are presented visually compared to when they are presented acoustically, both in sighted

and in blind. Statistical significance of the Jaccard similarity index between groups was assessed

using parametric statistics: one sample T-tests to test the difference against zero, a repeated mea-

sure ANOVA (4 categories * 2 groups) to compare the different categories and groups. The Green-

house-Geisser sphericity correction was applied.

However, the Jaccard similarity values could be partially driven by the number of voxels that

show selectivity for each category. For instance, the absence of overlap between the voxels that pre-

fer animals in EBa and SCv could be explained by the fact that different voxels prefer animals in the

two groups or by the fact that one or both groups have a limited number of voxels that show a pref-

erence for this category. To disentangle these two possibilities we counted in each group the num-

ber of voxels within VOTC that prefers each category (see Figure 2A for the results). We ended up

with four values (one number for each category) for each group. Statistical significance of the num-

ber of voxels within groups was assessed using parametric statistics: One sample t-tests to assess

the difference against zero, a repeated measure ANOVA (four categories * three groups) to com-

pare the different categories and groups.

MVP-classifications: Binary decoding
We performed a binary MVP-classification (using SVM - support vector machine classifier) to look at

the ability of each ROI to distinguish between two categories at time. With eight categories we can

have 28 possible pairs, resulting in 28 binary MVP-classification tests in each ROI. Statistical signifi-

cance of the binary classification was assessed using t-test against the chance level. We, then, aver-

aged the 28 accuracy values of each subject in order to have one mean accuracy value for subject.

Statistical significance of the averaged binary classification was assessed using parametric statistics:

t-test against zero and ANOVA.

Representational similarity analysis (RSA): Correlation between neural
dissimilarity matrices of the three groups
We further investigated the functional profile of the ROIs using RSA. RSA was performed using the

CoSMoMVPA toolbox, implemented in Matlab (r2013b; Matworks). The basic concept of RSA is the

dissimilarity matrix (DSM). A DSM is a square matrix where the number of columns and rows corre-

sponds to the number of the conditions (8 � 8 in this experiment) and it is symmetrical about a diag-

onal of zeros. Each cell contains the dissimilarity index between the two stimuli. We used the binary

MVP-classification as dissimilarity index to build neural DSMs (Carlson et al., 2013; Cichy and Pan-

tazis, 2017; Cichy et al., 2013; Dobs et al., 2019; Haxby et al., 2014; Haxby et al., 2011;
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O’Toole et al., 2005; Pereira et al., 2009; Proklova et al., 2019) for each group, in order to com-

pare the functional profile of the ROIs between the three groups. In this way, we ended up with a

DSM for each group for every ROI.

We preferred to use binary MVP-classification as dissimilarity index to build neural DSMs rather

than other types of dissimilarity measures (e.g. Pearson correlation, Euclidean distance, Spearman

correlation) since two experimental conditions that do not drive a response and therefore have

uncorrelated patterns (noise only, r » 0) appear very dissimilar (1 – r » 1). When using a decoding

approach instead, due to the intrinsic cross-validation steps, we would find that the two conditions

that don’t drive responses are indistinguishable, despite their substantial correlation distance

(Walther et al., 2016) since the noise is independent between the training and testing partitions,

therefore cross-validated estimates of the distance do not grow with increasing noise. This was cru-

cial in our study since we are looking at brain activity elicited by sounds in brain regions that are pri-

marily visual (EVC and VOTC), therefore the level of noise is expected to be high, at least in sighted

people.

Finally, to compare how similar are the DSMs in the three groups, for each pair of groups (i.e. 1.

SCv-EBa; 2.SCv-SCa; 3.EBa-SCa) (1) we computed the Spearman’s correlation between the upper tri-

angular DSM (excluding the diagonal) of each subject from Group one with the averaged upper tri-

angular DSM (excluding the diagonal) of Group two and we compute the mean of these values. (2)

We computed the Spearman’s correlation between the upper triangular DSM (excluding the diago-

nal) of each subject from Group two with the averaged upper triangular DSM (excluding the diago-

nal) of Group one and we computed the mean of these values. (3) We averaged the two mean

values obtained from step 1 and step 2, in order to have one mean value for each groups’

comparison.

Considering the unidirectional hypothesis for this test (a positive correlation between neural simi-

larity and models similarity) and the difficult interpretation of a negative correlation, one-tailed statis-

tical tests were used. For all other tests (e.g., differences between groups), for which both directions

might be hypothesized, two-tailed tests were applied (Peelen et al., 2014; Evans et al., 2019).

See the section ‘Statistical analyses’ for details about the assessment of statistical differences.

Hierarchical clustering analysis on the brain categorical representations
In order to go beyond the correlation values and to explore more qualitatively the representational

structure of VOTC and EVC in the three groups, we implemented a hierarchical clustering approach

(King et al., 2019). First, we created a hierarchical cluster tree for each brain DSM using the ’linkage’

function in Matlab, then we defined clusters from this hierarchical cluster tree with the ‘cluster’ func-

tion in Matlab. Hierarchical clustering starts by treating each observation as a separate cluster. Then,

it identifies the two clusters that are closest together, and merges these two most similar clusters.

This continues until all the clusters are merged together or until the clustering is ‘stopped’ to a n

number of clusters. We repeated the clustering three times for each DSM, stopping it at 2, 3 and 4

clusters, respectively (see Figure 5). In this way, we could compare the similarities and the differen-

ces of the clusters at the different scales across the groups. We applied the same clustering analysis

also on the behavioral data (see Figure 5—figure supplement 1).

Representational similarity analysis (RSA): correlation with
representational low-level/behavioral models
We then intended to investigate which features of the visual and auditory stimuli were represented

in the different ROIs of sighted and blind subjects. RSA allows the comparisons between the brain

DSMs extracted from specific ROIs with representational DSMs, based on physical properties of the

stimuli or based on behavioral rating of the perceived categorical similarity of our stimuli.

Low-level DSM in the auditory experiment: pitch DSM
Pitch corresponds to the perceived frequency content of a stimulus. We selected this specific low-

level auditory feature for two reasons. First, previous studies showed that this physical property of

the sounds is distinctly represented in the auditory cortex and may create some low-level bias of

auditory category selective responses in the temporal cortex (Giordano et al., 2013; Leaver and

Rauschecker, 2010; Moerel et al., 2012). Second, we confirmed with our own SCa group that,
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among alternative auditory RDMs based on separate acoustic features (e.g. Harmonicity on noise

ratio, Spectral centroid), the pitch model correlated most with brain RDM extracted from the tempo-

ral cortex. This provided strong support that this model was maximally efficient in capturing the

encoding of sounds based on acoustic features in auditory cortical regions (see Figure 6—figure

supplement 1).

We computed a pitch value for each of the 24 auditory stimuli, using the Praat software and an

autocorrelation method. This method extracts the strongest periodic component of several time win-

dows across the stimulus and averages them to have one mean pitch value for that stimulus. The

‘pitch floor’ determines the size of the time windows over which these values are calculated in Praat.

Based on a previous study, we chose a default pitch floor of 60 Hz (Leaver and Rauschecker, 2010).

We then averaged the pitch values across stimuli belonging to the same category. Once we

obtained one pitch value for each category, we built the DSM computing the absolute value of the

pitch difference for each possible pairwise (see Figure 6A). The pitch DSM was not positively corre-

lated with the behavioral DSM of neither SCa (r=–0.36, p=0.06) nor EBa (r = –0.29, p=0.13).

Low-level DSM in the visual experiment: Hmax- C1 model
The Hmax model (Serre et al., 2007) reflects the hierarchical organization of the visual cortex

(Hubel and Wiesel, 1962) in a series of layers from V1 to infero-temporal (IT) cortex. To build our

low-level visual model we used the output from the V1- complex cells layer. The inputs for the model

are the gray-value luminance images presented in the sighted group doing the visual experiment.

Each image is first analysed by an array of simple cells (S1) units at 4 different orientations and 16

scales. At the next C1 layer, the image is subsampled through a local Max pooling operation over a

neighbourhood of S1 units in both space and scale, but with the same preferred orientation

(Serre et al., 2007). C1 layer stage corresponds to V1 cortical complex cells, which shows some tol-

erance to shift and size (Serre et al., 2007). The outputs of all complex cells were concatenated into

a vector as the V1 representational pattern of each image (Khaligh-Razavi and Kriegeskorte, 2014;

Kriegeskorte et al., 2008a). We averaged the vectors of images from the same category in order to

have one vector for each category. We, finally, built the (8 � 8) DSM computing 1- Pearson’s correla-

tion of each pair of vectors (see Figure 6A). The Hmax-C1 DSM was significantly correlated with the

SCv behavioral DSM (r = 0.56, p=0.002).

Behavioral-categorical DSMs
We used the pairwise similarity judgments from the behavioral experiment to build the semantic

DSMs. We computed one matrix for each subject that took part in the behavioral experiment and

we averaged all the matrices of the participants from the same group to finally obtain three mean

behavioral-categorical DSMs, one for each group (i.e. EBa, SCa, SCv; Figure 4A). The three behav-

ioral matrices were highly correlated between them (SCv-EBa: r = 0.89, p<0.001; SCv-SCa: r = 0.94,

p<0.001; EBa-SCa: r = 0.85, p<0.001), and the similarity judgment was clearly performed on a cate-

gorical-membership basis (Figure 6A).

The last step consisted in comparing neural and external DSMs models using a second order cor-

relation. Because we wanted to investigate each representational model independently from the

other, we relied on Spearman’s rank partial correlation: in the auditory experiment, we removed the

influence of the pitch similarity when we were computing the correlation with the behavioral matrix,

and vice versa; in the visual experiment, we removed the influence of the Hmax-C1 model similarity,

when we were computing the correlation with the behavioral matrix, and vice versa. In this way, we

could measure the partial correlation for each external model for each participant separately. Impor-

tantly, we did not correlate the full symmetrical DSMs but only the upper triangular DSM excluding

the diagonal.

See the section ‘Statistical analyses’ for details about the assessment of statistical differences.

RSA: Inter-subjects correlation
To examine the commonalities of the neural representational space across subjects in VOTC, we

extracted the neural DSM of every subject individually and then correlated it with the neural DSM of

every other subject. Since we have 49 participants in total, this analysis resulted in a 49 � 49 matrix

(Figure 7) in which each line and column represents the correlation of one subject’s DSM with all
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other subjects’ DSM. The three main squares in the diagonal (Figure 7) represent the within group

correlation of the 3 groups. We averaged the value within each main square (only the upper half

excluding the diagonal) on the diagonal to obtain a mean value of within group correlation for each

group. The three main off diagonal squares (Figure 7) represent the between groups correlation of

the three possible groups’ pairs (i.e. 1.SCv/EBa; 2.SCv-SCa; 3.EBa-SCa). We averaged the value

within each main off-diagonal square in order to obtain a mean value of between groups correlation

for each groups’ pair.

See the section ‘Statistical analyses’ for details about the assessment of statistical differences.

Representational connectivity analysis
Representational connectivity analysis were implemented to identify the representational relation-

ship among the ROIs composing VOTC and the rest of the brain (Kriegeskorte et al., 2008a;

Pillet et al., 2018). This approach can be considered a type of connectivity where similar RDMs of

two ROIs indicate shared representational structure and therefore is supposed to be a proxy for

information exchange (Kriegeskorte et al., 2008b). Representational connectivity between two

ROIs does not imply a direct structural connection but can provide connectivity information from a

functional perspective, assessing to what extent two regions represent information similarly

(Xue et al., 2013).

To perform this analysis, we included 30 bilateral parcels (covering almost the entire cortex)

extracted from the segmentation of individual anatomical scan following the Desikan-Killiany atlas

implemented in FreeSurfer (http://surfer.nmr.mgh.harvard.edu). We only excluded three parcels

(Entorhinal cortex, Temporal Pole and Frontal Pole) because their size was too small and signal too

noisy (these regions are notably highly susceptible to signal drop in EPI acquisition) to allowed the

extraction of reliable dissimilarity matrices in most of the participants. We merged together the left

and right corresponding parcels in order to have a total of 30 bilateral ROIs for each subject. From

each ROI we extracted the dissimilarity matrix based on binary decoding accuracies, as described in

the section ‘Representational similarity analysis (RSA): Correlation between neural dissimilarity matri-

ces of the three groups’. Finally, we computed the Spearman’s correlation between the three seed

ROIs (i.e. fusiform gyrus, parahippocampal gyrus and infero-temporal cortex) and all the other 27

ROIs. We ended up with a connectivity profile of 3 (number of seeds) by 27 (ROIs representing the

rest of the brain) for each subject. We considered this 3*27 matrix as one representational connectiv-

ity profile of the seed region in each subject.

Finally, to compare how similar are the RSA connectivity profiles in the three groups, for each

pair of groups (i.e. 1.SCv-EBa; 2.SCv-SCa; 3.EBa-SCa): (1) We computed the Spearman’s correlation

between the representational connectivity profile of each subject from Group one with the averaged

representational connectivity profile from Group two and we compute the mean of these values. (2)

We computed the Spearman’s correlation between the representational connectivity profile of each

subject from Group two with the averaged representational connectivity profile of Group one and

we computed the mean of these values. (3) We averaged the two mean values obtained from step 1

and step 2, in order to have one mean value for each group comparison.

We computed the same analysis also in the EVC, as a control ROI. In this case the three nodes

ROIs were the pericalcarine cortex, the cuneus and the lingual gyrus.

See the section ‘Statistical analyses’ for details about the assessment of statistical differences.

Statistical analyses
To assess statistical differences, we applied parametric tests (T-Test and ANOVA) in the analyses

that met the main assumptions required by parametric statistics: normal distribution of the data and

independency of the observations. Moreover, in case of statistical comparisons between different

groups we ran the Levene’s test to check for the assumption of equality of variances between the

groups, in case the test was significant (suggesting different levels of variance) we applied the Welch

Homogeneity correction. Parametric tests were used in the Jaccard similarity analyses (both within

and between groups), in the analysis on the selective voxel’s count and in the averaged binary

decoding analysis. In all these analyses the correlation data were z-transformed before subjecting

them to parametric statistics.
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However, the correlation of the topographical selectivity maps, the correlation of the brain dis-

similarity matrices, the correlation of the RSA connectivity profiles and the inter-subject DSMs corre-

lation did not meet the assumption of independency of the data. In fact, in these analyses we

contrast group’s comparisons, so data from the same subjects are always included in two compari-

sons (e.g. data from EBa subjects are included both in the SCv-EBa and in EBa-SCa comparisons).

For this reason, the use of permutation was a preferable approach in the case of these analyses. In

each of this analysis we have one vector of values for each subject in each ROI (i.e. The vector con-

taining the categorical selectivity label of each voxel; The brain dissimilarity matrix in the format of

pairwise distance vector; The vectorized RSA connectivity profile). In each analysis we want to corre-

late these values between each possible pair of groups, which are three in total: SCv-EBa; SCv-SCa;

EBa-SCa. To compute the average correlation value between each pair of groups we followed these

steps: (1) We computed the Spearman’s correlation between the vector of each subject from Group

one with the mean vector of Group two and we computed the mean of these values (e.g. we corre-

lated the vector from each EBa subject with the mean vector from the SCv group). (2) We computed

the Spearman’s correlation between the vector of each subject from Group two with the mean vec-

tor of Group one and we computed the mean of these values (e.g. we correlated the vector from

each SCv sub. with the mean vector from the EBa group). (3) We averaged the two mean values

obtained from step 1 and step 2, in order to have one mean value for each group comparison. Since

our data points are not completely independent, we cannot use parametric statistics (Parsons et al.,

2018). Therefore, to test statistical differences we used a permutation test (10.000 iterations): (4) We

randomly permuted the conditions of the vector of each subject from Group 1 and of the mean vec-

tor of Group 2 and we computed the correlation (as in Step 1). (5) We randomly permuted the con-

ditions of the vector of each subject from Group 2 and of the mean vector of Group 1 and we

computed the correlation (as in Step 2). (6) We averaged the 2 mean values obtained from step 4

and step 5. (7) We repeated these steps 10.000 times to obtain a distribution of correlations simulat-

ing the null hypothesis that the two vectors are unrelated (Kriegeskorte et al., 2008b). If the actual

correlation falls within the top a �100% of the simulated null distribution of correlations, the null

hypothesis of unrelated vectors can be rejected with a false-positives rate of a.

Only in the case of the correlation of topographical maps, we constrained the permutation per-

formed in the step five in order to take into consideration the inherent smoothness/spatial depen-

dencies in the univariate fMRI data. In each subject, we individuated each cluster of voxels showing

selectivity for the same category and we kept these clusters fixed in the permutation, assigning ran-

domly a condition to each of these predefined clusters. In this way, the spatial structure of the topo-

graphical maps was kept identical to the original one, making very unlikely that a significant result

could be explained by the voxels’ spatial dependencies. We may however note that this null-distribu-

tion is likely overly conservative since it assumes that size and position of clusters could be created

only from task-independent spatial dependencies (either intrinsic to the acquisition or due to

smoothing). We had to exclude one EBa subject from the analysis because he had less than seven

clusters in his topographical map, which is not enough to have 10000 combinations needed for the

permutation given our four categories tested (possible combinations = n_categoriesn_clusters;

47 = 16384).

To test the difference between the group pairs’ correlations (e.g. to test if the correlation

between SCv and EBa was different from the correlation of SCv and SCa), we used a permutation

test (10.000 iterations): (8) We computed the difference between the correlation of Pair one and Pair

2: mean correlation Pair1 – mean correlation Pair2. (9) We kept fixed the labels of the group com-

mon to the two pairs and we shuffled the labels of the subjects from the other two groups (e.g. if we

are comparing SCv-EBa versus SCv-SCa, we keep the SCv group fixed and we shuffle the labels of

EBa and SCa). (10) After shuffling the groups’ labels we computed again the point 1-2-3 and 8. (11)

We repeated this step 10.000 times to obtain a distribution of differences simulating the null hypoth-

esis that there is no difference between the two pairs’ correlations. If the actual difference falls within

the top a �100% of the simulated null distribution of difference, the null hypothesis of absence of

difference can be rejected with a false-positives rate of a.

Finally, also the RSA with representational low-levels and behavioral models did not meet the

assumption of independency of the data. In fact, for dissimilarity matrices the independence of the

samples cannot be assumed, because each similarity is dependent on two response patterns, each

of which also codetermines the similarities of all its other pairings in the RDM (Kriegeskorte et al.,
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2008b). For each group, the statistical difference from zero was determined using permutation test

(10000 iterations), building a null distribution for these correlation values by computing them after

randomly shuffling the labels of the matrices. Similarly, the statistical difference between groups was

assessed using permutation test (10000 iterations) building a null distribution for these correlation

values by computing them after randomly shuffling the group labels. Moreover, considering the uni-

directional hypothesis for this test (a positive correlation between neural similarity and models simi-

larity) and the difficult interpretation of a negative correlation, one-tailed statistical tests were used.

For all other tests (e.g., differences between groups), for which both directions might be hypothe-

sized, two-tailed tests were used (Peelen et al., 2014; Evans et al., 2019).

In each analysis, all the p-values are reported after false discovery rate (FDR) correction imple-

mented using the matlab function ‘mafdr’.
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Kostović I, Judaš M. 2010. The development of the subplate and thalamocortical connections in the human
foetal brain. Acta Paediatrica 99:1119–1127. DOI: https://doi.org/10.1111/j.1651-2227.2010.01811.x

Kriegeskorte N, Mur M, Bandettini P. 2008a. Representational similarity analysis - connecting the branches of
systems neuroscience. Frontiers in Systems Neuroscience 2:4. DOI: https://doi.org/10.3389/neuro.06.004.2008,
PMID: 19104670

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA. 2008b. Matching
categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:1126–1141.
DOI: https://doi.org/10.1016/j.neuron.2008.10.043, PMID: 19109916

Lane C, Kanjlia S, Omaki A, Bedny M. 2015. "Visual" Cortex of Congenitally Blind Adults Responds to Syntactic
Movement. Journal of Neuroscience 35:12859–12868. DOI: https://doi.org/10.1523/JNEUROSCI.1256-15.2015,
PMID: 26377472

Leaver AM, Rauschecker JP. 2010. Cortical representation of natural complex sounds: effects of acoustic
features and auditory object category. Journal of Neuroscience 30:7604–7612. DOI: https://doi.org/10.1523/
JNEUROSCI.0296-10.2010, PMID: 20519535

Levy I, Hasson U, Avidan G, Hendler T, Malach R. 2001. Center-periphery organization of human object Areas.
Nature Neuroscience 4:533–539. DOI: https://doi.org/10.1038/87490, PMID: 11319563

Logie RH. 1989. Characteristics of visual short-term memory. European Journal of Cognitive Psychology 1:275–
284. DOI: https://doi.org/10.1080/09541448908403088

Mahon BZ, Caramazza A. 2011. What drives the organization of object knowledge in the brain? Trends in
Cognitive Sciences 15:97–103. DOI: https://doi.org/10.1016/j.tics.2011.01.004, PMID: 21317022

Malach R, Levy I, Hasson U. 2002. The topography of high-order human object Areas. Trends in Cognitive
Sciences 6:176–184. DOI: https://doi.org/10.1016/S1364-6613(02)01870-3, PMID: 11912041

Marı́n-Padilla M. 2011. The Human Brain: Prenatal Development and Structure. Springer Nature. DOI: https://
doi.org/10.1007/978-3-642-14724-1

Martin C, Douglas D, Newsome R, Man L, Barense M. 2017. Integrative and distintive coding of perceptual and
concptual features in the ventral stream. eLife 29:e31873. DOI: https://doi.org/10.7554/eLife.31873

Mattioni S, Rezk M, Battal C, Vadlamudi J, Collignon O. 2018. The balanced act of crossmodal and intramodal
plasticity: enhanced representation of auditory categories in the occipital cortex of early blind people links to
reduced temporal coding. Journal of Vision 18:554. DOI: https://doi.org/10.1167/18.10.554

McCandliss BD, Cohen L, Dehaene S. 2003. The visual word form area: expertise for reading in the fusiform
gyrus. Trends in Cognitive Sciences 7:293–299. DOI: https://doi.org/10.1016/S1364-6613(03)00134-7, PMID: 12
860187

Moerel M, De Martino F, Formisano E. 2012. Processing of natural sounds in human auditory cortex: tonotopy,
spectral tuning, and relation to voice sensitivity. Journal of Neuroscience 32:14205–14216. DOI: https://doi.
org/10.1523/JNEUROSCI.1388-12.2012, PMID: 23055490

Nasr S, Echavarria CE, Tootell RB. 2014. Thinking outside the box: rectilinear shapes selectively activate scene-
selective cortex. Journal of Neuroscience 34:6721–6735. DOI: https://doi.org/10.1523/JNEUROSCI.4802-13.
2014, PMID: 24828628

Neville H, Bavelier D. 2002. Human brain plasticity: evidence from sensory deprivation and altered language
experience. Progress in Brain Research 138:177–188. DOI: https://doi.org/10.1016/S0079-6123(02)38078-6,
PMID: 12432770

Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. 2014. A toolbox for representational
similarity analysis. PLOS Computational Biology 10:e1003553. DOI: https://doi.org/10.1371/journal.pcbi.
1003553, PMID: 24743308

Norman KA, Polyn SM, Detre GJ, Haxby JV. 2006. Beyond mind-reading: multi-voxel pattern analysis of fMRI
data. Trends in Cognitive Sciences 10:424–430. DOI: https://doi.org/10.1016/j.tics.2006.07.005, PMID: 168993
97

O’Toole AJ, Jiang F, Abdi H, Haxby JV. 2005. Partially distributed representations of objects and faces in ventral
temporal cortex. Journal of Cognitive Neuroscience 17:580–590. DOI: https://doi.org/10.1162/
0898929053467550, PMID: 15829079

Op de Beeck HP, Pillet I, Ritchie JB. 2019. Factors determining where Category-Selective Areas emerge in visual
cortex. Trends in Cognitive Sciences 23:784–797. DOI: https://doi.org/10.1016/j.tics.2019.06.006,
PMID: 31327671

Mattioni et al. eLife 2020;9:e50732. DOI: https://doi.org/10.7554/eLife.50732 31 of 33

Research article Neuroscience

https://doi.org/10.1523/JNEUROSCI.0997-17.2017
https://doi.org/10.1523/JNEUROSCI.0997-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29061700
https://doi.org/10.1016/j.neuroimage.2019.04.079
http://www.ncbi.nlm.nih.gov/pubmed/31054350
https://doi.org/10.1523/JNEUROSCI.0500-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25057211
https://doi.org/10.1038/378496a0
http://www.ncbi.nlm.nih.gov/pubmed/7477406
https://doi.org/10.1126/science.284.5411.167
http://www.ncbi.nlm.nih.gov/pubmed/10102821
https://doi.org/10.1111/j.1651-2227.2010.01811.x
https://doi.org/10.3389/neuro.06.004.2008
http://www.ncbi.nlm.nih.gov/pubmed/19104670
https://doi.org/10.1016/j.neuron.2008.10.043
http://www.ncbi.nlm.nih.gov/pubmed/19109916
https://doi.org/10.1523/JNEUROSCI.1256-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26377472
https://doi.org/10.1523/JNEUROSCI.0296-10.2010
https://doi.org/10.1523/JNEUROSCI.0296-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20519535
https://doi.org/10.1038/87490
http://www.ncbi.nlm.nih.gov/pubmed/11319563
https://doi.org/10.1080/09541448908403088
https://doi.org/10.1016/j.tics.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/21317022
https://doi.org/10.1016/S1364-6613(02)01870-3
http://www.ncbi.nlm.nih.gov/pubmed/11912041
https://doi.org/10.1007/978-3-642-14724-1
https://doi.org/10.1007/978-3-642-14724-1
https://doi.org/10.7554/eLife.31873
https://doi.org/10.1167/18.10.554
https://doi.org/10.1016/S1364-6613(03)00134-7
http://www.ncbi.nlm.nih.gov/pubmed/12860187
http://www.ncbi.nlm.nih.gov/pubmed/12860187
https://doi.org/10.1523/JNEUROSCI.1388-12.2012
https://doi.org/10.1523/JNEUROSCI.1388-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23055490
https://doi.org/10.1523/JNEUROSCI.4802-13.2014
https://doi.org/10.1523/JNEUROSCI.4802-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24828628
https://doi.org/10.1016/S0079-6123(02)38078-6
http://www.ncbi.nlm.nih.gov/pubmed/12432770
https://doi.org/10.1371/journal.pcbi.1003553
https://doi.org/10.1371/journal.pcbi.1003553
http://www.ncbi.nlm.nih.gov/pubmed/24743308
https://doi.org/10.1016/j.tics.2006.07.005
http://www.ncbi.nlm.nih.gov/pubmed/16899397
http://www.ncbi.nlm.nih.gov/pubmed/16899397
https://doi.org/10.1162/0898929053467550
https://doi.org/10.1162/0898929053467550
http://www.ncbi.nlm.nih.gov/pubmed/15829079
https://doi.org/10.1016/j.tics.2019.06.006
http://www.ncbi.nlm.nih.gov/pubmed/31327671
https://doi.org/10.7554/eLife.50732


Pan WJ, Wu G, Li CX, Lin F, Sun J, Lei H. 2007. Progressive atrophy in the optic pathway and visual cortex of
early blind chinese adults: a voxel-based morphometry magnetic resonance imaging study. NeuroImage 37:
212–220. DOI: https://doi.org/10.1016/j.neuroimage.2007.05.014, PMID: 17560797

Park HJ, Lee JD, Kim EY, Park B, Oh MK, Lee S, Kim JJ. 2009. Morphological alterations in the congenital blind
based on the analysis of cortical thickness and surface area. NeuroImage 47:98–106. DOI: https://doi.org/10.
1016/j.neuroimage.2009.03.076, PMID: 19361567

Parsons NR, Teare MD, Sitch AJ. 2018. Unit of analysis issues in laboratory-based research. eLife 7:e32486.
DOI: https://doi.org/10.7554/eLife.32486, PMID: 29319501

Passingham RE, Stephan KE, Kötter R. 2002. The anatomical basis of functional localization in the cortex. Nature
Reviews Neuroscience 3:606–616. DOI: https://doi.org/10.1038/nrn893, PMID: 12154362

Peelen MV, Bracci S, Lu X, He C, Caramazza A, Bi Y. 2013. Tool selectivity in left occipitotemporal cortex
develops without vision. Journal of Cognitive Neuroscience 25:1225–1234. DOI: https://doi.org/10.1162/jocn_
a_00411, PMID: 23647514

Peelen MV, He C, Han Z, Caramazza A, Bi Y. 2014. Nonvisual and visual object shape representations in
occipitotemporal cortex: evidence from congenitally blind and sighted adults. Journal of Neuroscience 34:163–
170. DOI: https://doi.org/10.1523/JNEUROSCI.1114-13.2014, PMID: 24381278

Peelen MV, Downing PE. 2017. Category selectivity in human visual cortex: beyond visual object recognition.
Neuropsychologia 105:177–183. DOI: https://doi.org/10.1016/j.neuropsychologia.2017.03.033, PMID: 2
8377161

Pereira F, Mitchell T, Botvinick M. 2009. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage
45:S199–S209. DOI: https://doi.org/10.1016/j.neuroimage.2008.11.007, PMID: 19070668

Pietrini P, Furey ML, Ricciardi E, Gobbini MI, Wu WH, Cohen L, Guazzelli M, Haxby JV. 2004. Beyond sensory
images: object-based representation in the human ventral pathway. PNAS 101:5658–5663. DOI: https://doi.
org/10.1073/pnas.0400707101, PMID: 15064396

Pillet I, Beeck H, De O, Masson HL. 2018. Comparing the functional structure of neural networks from
representational similarity analysis with those from functional connectivity and univariate analyses *
correspondence. bioRxiv. DOI: https://doi.org/10.1101/487199

Poirier C, Collignon O, Scheiber C, De Volder A. 2004. Auditory motion processing in early blind subjects.
Cognitive Processing 5:254–256. DOI: https://doi.org/10.1007/s10339-004-0031-1

Proklova D, Kaiser D, Peelen MV. 2016. Disentangling representations of object shape and object category in
human visual cortex: the Animate-Inanimate distinction. Journal of Cognitive Neuroscience 28:680–692.
DOI: https://doi.org/10.1162/jocn_a_00924, PMID: 26765944

Proklova D, Kaiser D, Peelen MV. 2019. MEG sensor patterns reflect perceptual but not categorical similarity of
animate and inanimate objects. NeuroImage 193:167–177. DOI: https://doi.org/10.1016/j.neuroimage.2019.03.
028, PMID: 30885785

Rajimehr R, Devaney KJ, Bilenko NY, Young JC, Tootell RB. 2011. The "parahippocampal place area" responds
preferentially to high spatial frequencies in humans and monkeys. PLOS Biology 9:e1000608. DOI: https://doi.
org/10.1371/journal.pbio.1000608, PMID: 21483719

Reddy L, Tsuchiya N, Serre T. 2010. Reading the mind’s eye: decoding category information during mental
imagery. NeuroImage 50:818–825. DOI: https://doi.org/10.1016/j.neuroimage.2009.11.084, PMID: 20004247

Reich L, Szwed M, Cohen L, Amedi A. 2011. A ventral visual stream reading center independent of visual
experience. Current Biology 21:363–368. DOI: https://doi.org/10.1016/j.cub.2011.01.040, PMID: 21333539

Ricciardi E, Vanello N, Sani L, Gentili C, Scilingo EP, Landini L, Guazzelli M, Bicchi A, Haxby JV, Pietrini P. 2007.
The effect of visual experience on the development of functional architecture in hMT+. Cerebral Cortex 17:
2933–2939. DOI: https://doi.org/10.1093/cercor/bhm018, PMID: 17372275

Rice GE, Watson DM, Hartley T, Andrews TJ. 2014. Low-level image properties of visual objects predict patterns
of neural response across category-selective regions of the ventral visual pathway. Journal of Neuroscience 34:
8837–8844. DOI: https://doi.org/10.1523/JNEUROSCI.5265-13.2014, PMID: 24966383
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