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A recent trend in functional magnetic resonance imaging is to test for association of clinical disorders with every
possible connection between selected brain parcels. We investigated the impact of the resolution of functional
brain parcels, ranging from large-scale networks to local regions, on a mass univariate general linear model
(GLM) of connectomes. For each resolution taken independently, the Benjamini–Hochberg procedure controlled
the false-discovery rate (FDR) at nominal level on realistic simulations. However, the FDR for tests pooled across
all resolutions could be inflated compared to the FDRwithin resolution. This inflation was severe in the presence
of no orweak effects, but became negligible for strong effects.We thus developed an omnibus test to establish the
overall presence of true discoveries across all resolutions. Although not a guarantee to control the FDR across res-
olutions, the omnibus test may be used for descriptive analysis of the impact of resolution on a GLM analysis, in
complement to a primary analysis at a predefined single resolution. On three real datasets with significant om-
nibus test (schizophrenia, congenital blindness, motor practice), markedly higher rate of discovery were obtain-
ed at low resolutions, below 50, in line with simulations showing increase in sensitivity at such resolutions. This
increase in discovery rate came at the cost of a lower ability to localize effects, as low resolution parcels merged
many different brain regions together. However, with 30 or more parcels, the statistical effect maps were biolog-
ically plausible and very consistent across resolutions. These results show that resolution is a key parameter for
GLM-connectome analysis with FDR control, and that a functional brain parcellation with 30 to 50 parcels may
lead to an accurate summary of full connectome effects with good sensitivity in many situations.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Context

Brain connectivity in resting-state functional magnetic resonance
imaging (fMRI) has been found to be associated with a wide variety of
clinical disorders (Fox and Greicius, 2010; Castellanos et al., 2013;
Barkhof et al., 2014). Rather than focusing on a limited set of a priori
regions of interest, a recent trend is to perform statistical tests of
association across the whole connectome, i.e. at every possible
brain connection (Shehzad et al., 2014). Such connectome-wide
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association studies (CWAS) critically depend on the choice of the
brain parcels that are used to estimate the connections. Analyses
have been performed at different resolutions in the literature
(Meskaldji et al., 2013), e.g. voxels (Shehzad et al., 2014), regions
(Wang et al., 2007), or distributed networks (Jafri et al., 2008;
Marrelec et al., 2008). The main objective of this work was to study
the impact of the spatial resolution on the results of a CWAS.

Mass-univariate connectome-wide association studies

The mass-univariate approach to CWAS (Worsley et al., 1998) con-
sists of independently estimating a GLM at every connection. In the
GLM, a series of equations are solved to find a linear mixture of explan-
atory variables (called covariates) that best fit the connectivity values
observed across the many subjects. A p value is generated for each
parcels on connectome-wide association studies in fMRI, NeuroImage
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connection to quantify the probability that the estimated strength of as-
sociation between this connection and a covariate of interest could have
arisen randomly in the absence of a true association (Worsley and
Friston, 1995). The significance level of each test needs to be corrected
for the total number of tests, i.e. the number of brain connections,
using for example random field theory (Worsley et al., 1998) or FDR
(Benjamini and Hochberg, 1995). Correction for multiple comparisons
however generally comes at the cost of a sharp decrease in sensitivity.

Multiresolution parcellations and testing

A straightforward way to mitigate the impact of multiple compari-
sons on statistical power is to reduce the number of brain parcels. For
example, the AAL template (Tzourio-Mazoyer et al., 2002) includes
116 brain parcels based on anatomical landmarks. Data-driven algo-
rithms can also generate functional brain parcels (Bellec et al., 2006;
Thirion et al., 2006, 2014; Craddock et al., 2012; Blumensath et al.,
2013; Gordon et al., 2014). Few investigators have examined how reso-
lution impacts the results of a CWAS. Abou Elseoud et al. (2011) ex-
plored the impact of the number of components in a dual-regression
independent component analysis on the difference between patients
suffering from non-medicated seasonal affective disorder and normal
healthy controls. The authors concluded that the number of significant
findings was maximized at resolution 45 (in this case, 45 independent
components). The impact of the number of brain parcels was also inves-
tigated using spatially-constrained spectral clustering (Craddock et al.,
2012) at much higher resolutions (from 50 to 3000+) by Shehzad
et al. (2014). The authors concluded that the association between
resting-state connectivity and intelligence quotient was consistent
across resolutions. It should be noted that, in the above-mentioned
studies (Abou Elseoud et al., 2011; Shehzad et al., 2014), the authors
did not investigate the implications that the replication of statistical
tests at multiple resolutions may have in terms of the control of false
positives. We are thus not currently aware of a valid statistical frame-
work to examine the results of a CWAS with data-driven brain
parcellations at multiple resolutions.

Objectives

In this paper, we investigated empirically the impact of the number
of brain parcels (resolution) on a mass univariate GLM analysis of
connectomes (GLM-connectome). Our first objective was to empirically
Table 1
Summary of the specific objectives, experiments and findings of the paper.

Specific objectives Experiment(s)

1a. Check the validity of the FDR-BH
algorithm for GLM tests at a fixed
resolution.

The homoscedasticity and normality assumpt
GLM were tested on four real data samples at
resolution (300+). Simulations of group diffe
implemented at multiple resolutions with and
dependencies between tests.

1b. Assess the biological plausibility of the
results identified with
GLM-connectome with real data.

GLM-connectome analyses in three real datas
resolutions.

2a. Assess the specificity of
GLM-connectome when combining
multiple resolutions.

Simulations of group differences were implem
multiple resolutions with and without depend
between tests.

2b. Assess the specificity of the omnibus
test across resolutions in the absence of
signal (“global null”).

Test for differences in average connectivity be
random subgroups of a large demographically
homogeneous sample.

3a. Assess the sensitivity of the FDR-BH
across resolutions.

GLM-connectome analyses of simulated and r
multiple resolutions.

3b. Assess the consistency and differences
of GLM-connectome results at different
resolutions.

GLM-connectome analyses in three real datas
resolutions.
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assess if the Benjamini–Hochberg procedure (Benjamini and Hochberg,
1995) controlled appropriately the FDRwith a single brain parcellation,
and generated biologically plausible results. Our second objective was
to assess if repeating a GLM-connectome analysis independently using
multiple parcellations at different resolutions would inflate the overall
FDR, pooling tests across all resolutions. Anticipating a lack of control
in the absence of any true association, we developed an omnibus test
checking for the overall presence of significant associations across all
resolutions. Our third objective was to use the omnibus test to evaluate
how the resolution impacted the rate of discovery in aGLManalysis, and
if the associations derivedwith the GLMwould be consistent across res-
olutions. We conducted a series of experiments involving both simulat-
ed and real datasets to address these three objectives, which have been
summarized, along with the main findings, in Table 1.

Statistical testing procedures

Functional connectome

The first step to build a connectome is to select a parcellation of the
brain, with R parcels. In this work, we relied on a “Bootstrap Analysis of
Stable Clusters” (BASC), which can identify consistent functional parcels
for a group of subjects (Bellec et al., 2010), using a hierarchical cluster
with Ward's criterion both at the individual and the group levels. The
functional parcels can be generated at any arbitrary resolution (within
the range of the fMRI resolution), and we considered only parcels
generated at the group level, whichwere non-overlapping and not nec-
essarily spatially contiguous. For each resolution, and each pair of dis-
tinct parcels i and j at this resolution, the between-parcel connectivity
yi,j is measured by the Fisher transform of the Pearson's correlation be-
tween the average time series of the parcels. Note that other measures
can be used to quantify interactions between parcels, such as partial
correlations (Marrelec et al., 2006).We used correlation as it is the sim-
plest, most popular and still fairly accurate (Smith et al., 2011) measure
of interaction in fMRI. The statistical framework presented here could
still be applied to many other measures. The within-parcel connectivity
yi,i is the Fisher transformof the average correlation between time series
of every pair of distinct voxels inside parcel i. The connectome Y =
(yi,j)i,j = 1

R is thus a R × R matrix. Each column j (or row, as the matrix
is symmetric) codes for the connectivity between parcel j and all other
brain parcels, or in other word is a full brain functional connectivity
map. See Fig. 1a–b for a representation of a parcellation and associated
Finding(s)

ions of the
high
rences were
without

No significant departure from normality and homoscedasticity were
observed (Results Section). In the simulations, the BH procedure
controlled the FDR below or at the prescribed level (Figs. 3, 5).

ets at multiple The GLM-connectome identified biologically plausible changes in
connectivity in all three analyses (Figs. 9, 10).

ented at
encies

The FDR across resolutions was controlled in simulations with strong
or widespread signal, but was too liberal when no or weak signal was
simulated (Figs. 3, 5).

tween The FWE was controlled at nominal level by the omnibus test under
the global null (Fig. 5). Departures from nominal levels of the FDR
across resolutions could still be observed when the omnibus was
significant (Fig. 5).

eal datasets at On simulations, the sensitivity varied substantially across resolutions
and was higher at low resolutions, below 50. (Figs. 4, 6). On real
data, the discovery rate was markedly higher at resolutions below 50
(Figs. Fig. 7, 9).

ets at multiple Statistical parametric maps were very consistent across resolutions
(Fig. 11), although some effects associated with specific structures
were better seen at resolutions above 50 (Figs. 9, 10).

parcels on connectome-wide association studies in fMRI, NeuroImage
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Fig. 1.General linearmodel applied to connectomes. The connectivity is measured between R brain parcels generated through a clustering algorithm (panel a). The connectome is a R × R
matrixmeasuring functional connectivity between- andwithin-parcels (panel b). The association between phenotypes and connectomes is tested independently at each connection using
a general linear model at the group level (panel c). The results presented here are for illustration purpose only, and not related to the results presented in the application sections of the
manuscript.
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connectome. Connectomes are generated independently at each resolu-
tion. See SupplementaryMaterial S1 for amore formal description of the
connectome generation.

GLM-connectome analysis

For R parcels, there are exactly L = R(R + 1)/2 distinct elements in
an individual connectome Y. This connectome can be stored as a 1 × L
vector, where the brain connections have been ordered arbitrarily
along one dimension. When functional data is available on N subjects,
the group of connectomes is then assembled into a N × L array Y =
(yn,l), where n = 1,…,N each code for one subject and l = 1,…,L each
code for one connection. A general linear model (GLM) can then be
used to test the association between brain connectivity and a trait of in-
terest, such as the age or sex of participants. All of these C explanatory
variables are entered in a N × C matrix X. The variables are typically
corrected to have a zero mean across subjects, and an intercept (i.e. a
column filled with 1) is added to X. The GLM relies on the following
generative model:

Y ¼ XBþ E; ð1Þ

• Y is a N × L matrix where each row codes for a subject, and each col-
umn codes for a connection,

• X is aN× Cmatrix of explanatory variables (or covariates)where each
row codes for a subject and each column codes for a covariate,
Please cite this article as: Bellec, P., et al., Impact of the resolution of brain
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• B is an unknown C × L matrix of linear regression coefficients where
each row codes for a covariate and each column codes for a connection,

• E is a N × L random (noise) variable, with similar coding as Y.

We relied on the following parametric assumptions on the noise E
are (1) that its rows are independent; (2) that each element follows a
normal distribution with zero mean, and (3) that the variance of all el-
ements are constant within a column, also called the homoscedasticity
assumption. As the data generated from different subjects are statisti-
cally independent thefirst assumption is reasonable.We tested the nor-
mality and homoscedasticity assumptions on real datasets. Under these
parametric assumptions, the regression coefficients B can be estimated
with ordinary least squares and, for a given “contrast” vector c of size

1 × C, the significance of cB̂ can be tested with a connectome of t-test
(tl)l = 1

L , with associated p-values (pl)l = 1
L . The quantity pl controls for

the risk of false positive findings at each connection l. The GLM applied
on connectomes is illustrated in Fig. 1c. See Supplementary material S2
for the equations related to the estimation and testing of regression co-
efficients in GLM-connectome analysis.

The Benjamini–Hochberg FDR procedure

The number L of tests (pl)l = 1
L grows quadratically with the resolu-

tion K. The significance value applied on pl within a resolution thus
needs to be adjusted for this multiple comparison problem. We imple-
mented the Benjamini–Hochberg (BH) procedure (Benjamini and
Hochberg, 1995) to control the FDR at a specified level αwithin resolu-
tion (Supplementary Material S3). The idea of the FDR is not to strictly
parcels on connectome-wide association studies in fMRI, NeuroImage
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control the probability to observe at least one false positive (a quantity
know as family-wise error, FWE), but rather to control, on average, the
proportion of false positive amongst the findings. Note that controlling
for the FDR is not necessarily a more liberal attitude than controlling
for the FWE: if the global null hypothesis is verified, i.e. all discoveries
are false positive, then the FDR is exactly the FWE. The BH procedure
was designed for independent tests, yet it was shown to have a satisfac-
tory behavior even in the presence of positive correlation between the
tests pl (Benjamini and Yekutieli, 2001). On simulations, the specificity
of the FDR-BH algorithmwas assessed in the presence of realistic corre-
lations between tests.
Multiresolution GLM-connectome analysis

It is possible to assess how resolution impacts a GLM-connectome by
replicating the analysiswith different numbers of clusters (Fig. 2). A sys-
tematic approach would consist of a regular grid, e.g. from 10 to 300
brain parcels, with a step of 10. The GLM results at such resolutions
may however be highly redundant, as some parcels may be found iden-
tically at different resolutions if those are close. An alternative strategy
would be to select a limited number of non-redundant resolutions
that span a given range (e.g. 10 to 300). For this purpose, we used the
multiresolution stepwise selection (MSTEPS) algorithm recently pro-
posed by Bellec (2013) to select a subset of resolutions that provides
an accurate summary of the stable features of brain clusters observed
across all possible resolutions. We evaluated both strategies (regular
grid and sparse subset) in this work, both on simulations and real data.
-1
0

1-1
0

1

Fig. 2.General linearmodel applied to connectomes atmultiple spatial resolutions. The generati
using the bootstrap analysis of stable clustered (BASC), with a hierarchical clustering usingWa
size (left column) and after rescaling to fit identical size (middle column) to illustrate the qua
increase in the number of parcels. The results presented here are for illustration purpose only,
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FDR within and across resolutions

Testing GLM on connectomes at multiple resolutions introduces a
new level of multiple comparisons, this time across resolutions rather
than across connections. The FDR across resolutions is the FDR for the
overall family of tests including all employed connections and resolu-
tions. For example, if two resolutions were used, K ∈ {10,100}, there
would be K(K + 1)/2 tests at each resolution (i.e. 55 and 5050). If
there were 10 discoveries at resolution 10, 1 of which was a false posi-
tive, and 200 discoveries at resolution 100, 10 of which were false pos-
itive, the ratio of false discoveries for this simulation would be 1/10 =
0.1 within resolution 10, and 10/200 = 0.05 within resolution 100.
The ratio of false discoveries across resolutions would be (1 + 10)/
(10 + 200) = 0.052. The FDR within resolution and across resolutions
would be the average of the corresponding false discovery proportions
over many replications of the testing procedure.

In the absence of any true association at any resolution (global null
hypothesis), the FDR matches with the FWE, and is inflated when mul-
tiple resolutions of tests are combined. The FDR across resolutions is
thus expected to be inflated compared to the FDR within resolution
under the global null hypothesis. By contrast, in the presence of a sub-
stantial amount of true discoveries, Efron (2008) hypothesized based
on simulations that the FDR across many resolutions of tests would
match the FDR within each resolution. The rationale for this hypothesis
is that, in the presence of signal, the FDR controls for a proportion,which
behaveswellwhenmultiple resolutions are combined.We assessed this
hypothesis on realistic simulations ofmultiresolution GLM-connectome
analysis.
1 # networks

resolution (num
ber of brain parcels)

10

50

100

200

500

on of data-drivenbrain parcels is iterated at different resolutions (number of brain parcels),
rd's criterion. The statistical parametric connectomes are represented using both their real
dratic increase in the number of connections (multiple comparisons) that comes with an
and not related to the results presented in the application sections of the manuscript.

parcels on connectome-wide association studies in fMRI, NeuroImage
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Multiresolution omnibus test

As outlined above, the most problematic scenario when exploring a
GLM analysis at multiple resolutions is the global null hypothesis. To
address this issue,we developed an omnibus test of the overall presence
of true associations in the GLM, pooling FDR discoveries across all
resolutions. At a given resolution K, VK is the percentage of discoveries,
i.e. the number of significant tests as identified by FDR-BH at a given
level α, divided by the total number of tests. The overall volume of dis-
coveries V is defined as the average of VK across all resolutions K. The
omnibus test is based on the probability that V could be observed
under the global null hypothesisðG0Þ, i.e. nonon-null effect at any connec-
tion and any resolution. This test proceeds by comparing the volume of
discoveries V observed empirically in the group sample against the vol-
ume of discoveries V* that could be observed under ðG0Þ. The following
steps are used to generate replications of V* under ðG0Þ:

• the GLM is first applied with a reduced model where the explanatory
variable of interest (as selected through the contrast) is removed.

• A permutation of the residuals is generated as described in Anderson
(2002), see Appendix A. In order to respect the dependencies between
connectivity estimates within and across resolutions, the same
permutation of the subjects is applied to all of the connections and
resolutions.

• A replication of connectomes is generated under ðG0Þ by adding the
permuted residuals to the estimated mixture of reduced explanatory
variables.

• The detection procedure is applied, underðG0Þ, and the total volume of
discoveries V* is derived.

A Monte-Carlo approximation, with typically 10,000 permutation
samples on real data, is used to estimate a false-positive rate p when
testing against the global null hypothesis. Note that a single omnibus
test is derived, controlling for the FWE of the experiment as a whole. If
this test passed significance, each resolution is examined with a control
of the FDR at α = 0.05, uncorrected for multiple comparisons across
resolutions. If the omnibus test does not reach significance, then no
connection at any resolution is deemed significant.

Evaluation on simulated datasets with independent tests

Methods

Data-generating procedure
We started by simple simulations of independent tests, to assess to

which extent the hypothesis of Efron (2008)was robust to different sce-
narios, and if the omnibus testwould systematically ensure that the FDR
across resolutions would be well controlled. A number K of test resolu-
tions were generated independently, each one composed of Lk tests,
k = 1,…,K. Each resolution included a set proportion of true non-null
hypotheses π1, identical for all resolutions. If π1Lk was not an integer,
the number of true positives nk was set to either ⌊π1Lk⌋ or ⌊π1Lk⌋ + 1,
with probabilities such that on average over many simulations Eðn1Þ ¼
π1Lk. For a non-null test l, the associated p-value was simulated as:

yl ¼ θþ zl; zl � N 0;1ð Þ; ð2Þ

pl ¼ Pr x≥yljx � N 0;1ð Þð Þ; ð3Þ

where Nð0; ; ;1Þ was a Gaussian distribution with zero mean and unit
variance, and θ N 0 was a simulation parameter (further called effect
size). The null tests were generated the same way, but with an effect
size θ = 0.
Please cite this article as: Bellec, P., et al., Impact of the resolution of brain
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Simulations scenarios
For each experiment, all combinations of effect size in the grid {2,3,5}

and π1 in the grid {0 %,1 %,2 %,5 %,10 %} were considered. We imple-
mented a series of experiments:

• We first checked how the FDR across resolutions behaved as a func-
tion of the number of resolutions K, with K in {2,5,10} and Lk equals
to 1000 (corresponding approximately to the number of tests at reso-
lution 45).

• We then checked how the FDR across resolutions behaved as a func-
tion of the number of tests per resolution Lk with Lk identical for all
k, and in the grid {100,1000,10000} (corresponding roughly to resolu-
tions 14, 45 and 141), and K = 5 resolutions.

• We checked how the FDR across resolutions behaved for a number of
resolutions and a number of tests per family that would be compara-
ble to situations encountered in a multiresolution GLM-connectome
analysis.

– We first tested the resolutions selected by MSTEPS on the SCHIZO
dataset (see Section Application to real datasets), i.e. K = 7 and Lk
in (28, 136, 325, 1540, 6555, 19900, 53956), corresponding to the
number of tests at resolutions (7, 16, 25, 55, 114, 199, 328).

– We then tested the procedure on K = 30 and Lk ranging from 55 to
45150, which would be equal to the number of tests associated
with a regular grid covering resolutions 10 to 300 with a step of 10.

– We finally tested the behavior of smaller grids, with a number of
tests equivalent to GLM tests over resolutions ranging from 10 to ei-
ther 50, 100 or 300 (with a step of 10).

Computational environment
All the experiments reported in the paper were performed using the

NeuroImaging Analysis Kit (NIAK1) version 0.12.18, under CentOS
version 6.3 with Octave2 version 3.8.1 and the Minc toolkit3 version
0.3.18. Analyses were executed in parallel on the “Guillimin” super-
computer4, using the pipeline system for Octave and Matlab (Bellec
et al., 2012), version 1.0.2. The scripts used for processing can be
found on Github5.

Statistical testing procedure
For each simulation scenario, the FDR-BH procedure was applied to

each resolution independently, with a significance level α in the grid
{0.01,0.05,0.1,0.2}. To estimate the distribution of the volume of discov-
ery under the global null, 1000 samples were generated with the pa-
rameters θ and π1 set to zero, for each choice of K and Lk. These
replications under the global null were used to generate the p-values
of the omnibus test for all simulations with identical K and Lk.

Effective FDR, sensitivity and omnibus test
For each resolution, the effective FDR and sensitivity were evaluated

for tests at a single parcellation with the specified number of parcels.
The effective FDR was computed as the number of false discoveries
divided by the total number of discoveries, averaged across 1000 repli-
cations of each simulation scenario. The effective sensitivity was com-
puted as the number of true discoveries, divided by the number of
true non-null hypotheses present at this resolution, and averaged across
the 1000 replications. To compute the FDR across resolutions, the same
procedure to estimate the effective FDRwas applied to the combination
of tests pooled across all resolutions. Finally, we also derived amodified
parcels on connectome-wide association studies in fMRI, NeuroImage
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Fig. 3. Nominal vs effective FDR on simulations with independent tests (K = 7, Lk in (28,136,325,1540,6555,19900,53956), corresponding to the MSTEPS resolutions in the SCHIZO
dataset). The effective FDR within resolution (blue), across resolutions (green) and across resolutions with omnibus (red) is plotted against the nominal FDR (black), for four levels:
0.01,0.05,0.1,0.2. Plots are presented for different proportions of non-null hypothesis per resolution π1 (0 %,1 %,2 %,5 %,10 %), and an effect size θ = 2. For large θ and/or π1, the omnibus
test is always rejected, and the green plot matches perfectly the red plot, which becomes invisible.

6 http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html.
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FDR and sensitivity, where the BH-FDR procedure was combined with
the omnibus permutation test, at a significance level of p b 0.05.

Results

FDR within and across resolutions
The effective FDR within each resolution followed closely (1− π1)α

(Fig. 3), which replicated a well-established result: the BH-FDR proce-
dure is conservative for independent tests. For example, for α = 0.2
and a π1 of 10 %, the effective FDR was approximately 0.18. The FDR
across resolutions followed a smooth transition between two regimes.
In the first regime, called “liberal” (π1 = 0 %, Fig. 3), the FDR matched
with the FWE, i.e. the probability to have one or more false positive.
As expected for a FWE, the effective FDR across resolutions was largely
superior to the prescribed level α. In the second regime, called “exact”,
the FDR across resolutions precisely followed the FDR within resolution
(e.g. π1 = 10 %, Fig. 3). The transition between these two regimes
(liberal and exact) was smooth, and in situations that resembled
the global null hypothesis (i.e. at low π1 or effect size), the FDR across
resolutions was more liberal than the nominal α, sometimes by a
wide margin, e.g. Lk = 1000, π1 = 1 % and θ = 2 (Supplementary
Fig. S1). Increasing the effect size, or increasing π1 both pushed the
FDR across resolutions towards the “exact” regime (Supplementary
Fig. S1).

FDR across resolutions, with omnibus test
The effect of the omnibus test on the FDR across resolutionswas par-

ticularly apparent under the global null hypothesis in all simulations:
the FDR across resolutions matched the FWE, which was less than, or
equal to, the p b 0.05 threshold of the omnibus test, as expected
(π1 = 0 %, Fig. 3). More generally, for simulation scenarios that repre-
sented a transition between the liberal and exact regimes of the FDR
across resolutions, the application of the omnibus test tended to make
the FDR across resolutions more conservative. Note that for a nominal
FDR lower than the threshold of the omnibus test (e.g. 0.01) and
π1 = 0 %, the effective FDR departed from the nominal level as the om-
nibus test only controlled the FWE at p b 0.05. Even for a nominal FDR
larger than the threshold of the omnibus test, there was still no guaran-
tee that the FDR across resolutions conformed to the specifiedα level, as
can be seen for Lk=1000, π1 = 1 % and θ=2 in Supplementary Fig. S1,
where the effective FDR was larger than 0.1 for a nominal FDR of 0.05.

Influence of the number of resolutions K
By varying K in {2,5,10} for a fixed number of tests per resolution

(Lk = 1000 for all k), we found that the transition between the liberal
and exact regime of the FDR across resolutions took longer when the
number of resolutions increased. For π1 = 2 % and θ=2, and a nominal
FDR α=0.05, the effective FDR was about 0.07 with K= 2, while it in-
creased to almost 0.1 for K = 10 (Supplementary Fig. S2). This was
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expected as more families K alsomean a more severe multiple compar-
ison problem under the global null, where the FDR matches the FWE
and thus increases with more independent tests.

Influence of the number of tests per resolution L
By varying Lk in {100,1000,10000} (with Lk identical for all k) for a

fixed number of resolutions K = 5, we found that the transition be-
tween the liberal and exact regime of the FDR was quicker when the
number of tests per resolution increased. In other words, the exact re-
gime appears as an asymptotic behavior of the FDR across resolutions,
when the number of tests per resolution becomes large. For example,
for π1 = 2 % and θ = 2, and a nominal FDR α = 0.05, the effective FDR
across resolutions went from above 0.1 with 100 tests per resolution
to below 0.06 with 10000 tests per resolution (Supplementary Fig. S3).

Sensitivity
Increasing either π1 or θ increased the overall sensitivity of the tests.

The sensitivity peaked at very low resolutions, and decreased expo-
nentially to reach a plateau around resolution 10 to 50. After this
initial loss in sensitivity, the sensitivity was uniform across resolu-
tions (Fig. 4). Identical conclusions were reached with resolutions
akin to connectome testing on a regular grid of resolutions ranging
from 10 to either 50, 100, or 300 parcels (with a step of 10). See
Supplementary Figs. S4–S6 for sensitivity and effective FDR results
in all scenarios.

Evaluation on simulated datasets with dependent tests

Methods

Data-generating procedure
We designed a simulation framework for multiresolution GLM-

connectome analysis in the presence of dependencies between
tests, both within resolution and across resolutions. To ensure
that these dependencies would be as realistic as possible, semi-
synthetic datasets were generated starting from a large real sample
(Cambridge) released as part of the 1000 functional connectome
project6 (Biswal et al., 2010). This sample (Liu et al., 2009) includ-
ed resting-state fMRI time series (eyes opened, TR of 3 s, 119 vol-
umes per subject) collected with a 3 T scanner on 198 healthy
subjects (75 males), with an age ranging from 18 to 30 yrs. All the
datasets were preprocessed and resampled in stereotaxic space,
as described in the Methods Section. A region growing algorithm
was used to extract 483 regions, common to all subjects, as de-
scribed in Bellec et al. (2010). For each subject, the average
parcels on connectome-wide association studies in fMRI, NeuroImage
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Fig. 4. Sensitivity on simulations with independent tests, K= 7, Lk in (28,136,325,1540,6555,19900,53956), corresponding to the number of connections associated with the resolutions
selected byMSTEPS on the SCHIZO dataset. The sensitivity is plotted as a function of resolutions (number of brain parcels) at four tested (within-resolution) FDR levels: 0.01,0.05,0.1,0.2.
For each resolution, the sensitivity was evaluated for tests at a single parcellationwith the specified number of parcels. A test is only considered as significant if in addition an omnibus test
against the global null hypothesis across resolutions as been rejected at p b 0.05. Each column corresponds to a certain proportion of non-null hypothesis per resolution π1 with an effect
size θ = 3.
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functional time series and associated connectomes were generated
using these regions7 (see Section Functional connectome). The av-
erage connectome across all subjects was derived, and a hierarchi-
cal clustering procedure (with Ward's criterion) was applied to
derive a hierarchy of brain parcels at all possible resolutions, rang-
ing from 1 to 483. The simulation procedure relied on the manual
selection of a critical resolution K and a particular cluster k at this
resolution. For each simulation, two non-overlapping subgroups
of subject (N subjects per group) were randomly selected. A circu-
lar block bootstrap (CBB) procedure was applied to resample the
individual time series, using identical time blocks within each clus-
ter, and independent time blocks in different clusters. This resam-
pling scheme ensured that within-cluster correlations were
preserved, while between-cluster correlations had a value of zero
on average. Finally, for the subjects selected to be in the first
group, a single realization of an independent and identically dis-
tributed Gaussian variable, where each time point had a zero
mean and a variance of a2, was added to the time series of the re-
gions inside cluster k, after the time series were corrected to a
zero temporal mean and a variance of (1 − a2). The addition of
this signal increased the intra-parcel connectivity of the cluster in-
cluding cluster k for all resolutions smaller or equal to K, and in-
creased the within- as well as between-parcel connectivity for all
clusters included in cluster k for resolutions strictly larger than K. Be-
cause of the absence of correlations between parcels at resolution K
(due to the CBB resampling), all other connections within- or between
clusters at every resolution were left unchanged by this procedure. It
was thus possible to know exactly which connections were true or
false null hypothesis in the group difference at every resolution. Supple-
mentary Figs. S7 and S8 outline the procedure of multiresolution
connectome simulation.
Effect size and proportion of non-null hypothesis
A number of clusters of reference were handpicked such that the

proportion of non-null hypothesis π1(k) would be about 1 %, 2 %, 5 %
and 10 % at all resolutions k. Note that these reference clusters were
used to set true non-null hypotheses at all the resolutions of analysis,
yet the subdivisions (or merging) associated with these clusters repre-
sented a varying proportion of the number of clusters at any given res-
olution. As a consequence, and unlike simulations of independent tests,
π1(k) was dependent on the resolution k. Two values for a2 were select-
ed: 0.1 and 0.2. The effect size associated with a given a2 actually
depended on the within-cluster correlations, between-subject variance
7 The average time series have been publicly released at http://figshare.com/articles/
Cambridge_resting_state_fMRI_time_series_preprocessed_with_NIAK_0_12_4/1159331.
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in connectivity as well as the resolution of analysis. Two sample sizes
were investigated:N=40 (20 subject per group), andN=100 (50 sub-
jects per group). See Supplementary Material Fig. S9 for plots of the ef-
fect size and percentage of true non-null hypotheses as a function of
resolution. For each simulation scenarios, 1000 Monte-Carlo samples
were generated and subjected to a GLM-connectome analysis, with
FDR levels of 0.01, 0.05, 0.1 and 0.2, as well as an omnibus test at
p b 0.05. The same resolutions were tested here as in the simulations
for independent tests: the resolutions selected by MSTEPS on the
SCHIZO experiment, and a regular grid from 10 to 300 clusters (with a
step of 10).

Simulations under the global null
To assess the behavior of the testing procedures in the absence of

any signal, we also ran experiments under the global null. In that case
real connectomes were generated for randomly selected and non-
overlapping groups of subjects, and then a testing procedurewas imple-
mented to assess the significance of group differences. In these experi-
ments, no bootstrap was performed on individual time series nor any
signal was added. The experiments simply consisted in comparing real
connectomes between random groups of subjects sampled from identi-
cal populations, using real dependencies between tests.

Robustness to the choice of clusters
Finally, we also investigated how the procedure behaved when the

clusters used in the testing procedures did not match exactly with the
clusters that were used to generate the simulations. For this purpose,
for each simulation, no structured signal was generated in 30% of arbi-
trarily selected regions in the cluster of reference, but the same struc-
tured signal was instead added to an equivalent number of arbitrarily
selected regions from other clusters. The same regions were selected
across all simulations to simulate a systematic departure of the test clus-
ters from the ground truth clusters. The multiresolution clusters with-
out perturbations were used in the statistical testing procedures. In
this setting, many connections outside of the cluster of reference
ended up with very small effects, and we did not investigate the speci-
ficity given the very large number of true non-null hypotheses and large
variations in effect size. However, we did investigate the sensitivity of
the FDR-BH procedure, using the same definition of true non-null
hypothesis as with the simulations without perturbation.

Results

Effective FDR within resolution
Fig. 5 represents the effective FDR as a function of resolution for the

GLM-connectome procedure, in the case of a regular grid of resolutions
covering 10 to 300 brain parcels and a perfect match between the true
and test clusters. The effective FDR was conservative within resolution
parcels on connectome-wide association studies in fMRI, NeuroImage
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Fig. 5.Nominal vs effective FDR on simulations with dependent tests (K=30, Lk ranging from 55 to 45150, corresponding to the number of connections associated with a regular grid of
resolutions covering 10 to 300with a step of 10). The effective FDR is plotted against the nominal FDRwithin each resolution (blue plots), across all resolutions (green plots) and across all
resolutions, combined with an omnibus test for rejection of the global null hypothesis (red plot). The expected (nominal) values are represented in black plots, corresponding to the four
tested FDR levels: 0.01,0.05,0.1,0.2. Each column corresponds to a certain proportion of non-null hypothesis per resolution π1 (0 %,1 %,2 %,5 %,10 %), and each row corresponds to a different
combination of effect and sample size N in {40,100}, a2 in {0.1,0.2}, see text for details. Please note that in the presence of strong signal (large θ and/or π1), the omnibus test is always
rejected, and the green plot matches perfectly the red plot, which becomes invisible.
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on the simulations with dependent tests, e.g. the effective FDR was
about 0.15 for a nominal FDR of 0.2. This is in contrastwith the indepen-
dent tests, where the control of the FDR within resolution was exact
under the global null hypothesis. Our interpretation was that the large
positive correlations present in fMRI time series caused the FDR-BHpro-
cedure to become conservative. In the presence of signal, the FDRwithin
resolutionwas still well controlled,with the same (1− π1) factor on the
effective FDR as was observed with independent tests.

Effective FDR across resolutions
As was observed on independent tests, the FDR across resolutions

transitioned between a “liberal” regime, in simulation scenarios close
to the global null hypothesis, to an exact regime, where the FDR across
resolutions matched the FDR within resolution (Fig. 5). The transition
between regimes happened quite fast, with either a2 = 0.2 or N =
100, as soon as π1 was larger than 5 %. When combined with the omni-
bus test at p b 0.05, the FWE under the global null hypothesis became
exact or conservative for a FDR level above 0.05. Note that for a nominal
FDR lower than 0.05 (e.g. 0.01) and π1= 0 %, the effective FDR departed
from the nominal level as the omnibus test only controlled the FWE at
p b 0.05. Importantly, the omnibus test also made the procedure either
conservative (for α ≥ 0.1) or only slightly liberal in the scenarios were
the FDR across resolutions transitioned between the “liberal” and
“exact” regimes, with the effective FDR in the range 0.06 to 0.09 for a
nominal level of 0.05 in the worst cases (i.e. N = 40, a2 = 0.1 and
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π1 = 1 %). The conclusions were identical when using a regular grid of
K = 30 resolutions ranging from 10 to 300 parcels (with a step of 10),
or K = 7 resolutions identical to those selected by MSTEPS on the
SCHIZO dataset (Supplementary Fig. S10).

Sensitivity
When the true and test clusters perfectly matched, the sensitivity

across resolutions followed a similar pattern in all scenarios: a decrease
in sensitivity with increasing resolutions, although not as sharp as what
was observed on simulationswith independent tests (Fig. 6, see Supple-
mentary Figs. S11 and S12 for all tested scenarios). This closelymirrored
the large increase in effect size at low resolutions, due to averaging on
clusters that perfectly matched the simulated signal (Supplementary
Fig. S9). We noted that the simulation settings where departure from
nominal levels were observed were also characterized by very low
rate of discoveries, notably at high resolution, with sensitivity below
0.1 for resolutions higher than 50 and falling to zero for resolutions
higher than 150 (Supplementary Fig. S11, first row). By contrast,
when introducing a 30% mismatch between the true and test clusters,
increases in sensitivity were observed across a wider range of low reso-
lutions, e.g.N=100, a2=0.1 and π1=10 %, or even at high resolutions,
e.g. π1 = 2 % in Fig. 6. This again reflected the more variable profiles of
effect size as a function of resolutions across scenarios after the intro-
duction of amismatch between the true and test clusters. These simula-
tions demonstrated the possibility to have increase in sensitivity as a
parcels on connectome-wide association studies in fMRI, NeuroImage
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Fig. 6. Sensitivity on simulations with dependent tests (K = 30, Lk ranging from 55 to 45150, corresponding to the number of connections associated with a regular grid of resolutions
covering 10 to 300 with a step of 10). The sensitivity is represented as a function of resolution, for four FDR levels: 0.01,0.05,0.1,0.2, with either nomismatch or a 30%mismatch between
the true and test clusters. For each resolution, the sensitivity was evaluated for tests at a single parcellation with the specified number of parcels. In addition to FDR control within
resolution, an omnibus test at p b 0.05 was performed. Each column corresponds to a certain proportion of non-null hypothesis per resolution π1 (0 %,1 %,2 %,5 %,10 %), with a sample
size N = 40 and a2 = 0.2.
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function of resolution, and that these gainswould potentially be depen-
dent on the effect size, the mismatch between the true/test clusters, as
well as the sample size. These observations were made for a regular
grid of resolutions, but were identical using the MSTEPS resolutions
from the SCHIZO dataset (not shown).

Application to real datasets

Methods

Participants
We evaluated the GLM-connectome on three real datasets: (1) a

study (SCHIZO) comparing patients suffering from schizophrenia with
healthy control subjects; (2) a study (BLIND) on patients suffering of
congenital blindness, compared to sighted controls; and (3) a study
(MOTOR) where resting-state data connectivity was compared before
and after learning of a motor task. The SCHIZO dataset was contributed
by the Center for Biomedical Research Excellence (COBRE) to the 1000
functional connectome project8 (Biswal et al., 2010). The sample com-
prised 72 patients diagnosed with schizophrenia (58 males, age
range = 18–65 yrs) and 74 healthy controls (51 males, age range =
18–65 yrs). The BLIND (Collignon et al., 2011) and MOTOR (Albouy
et al., 2015) datasets were acquired at the Functional NeuroImaging
Unit, at the Institut Universitaire de Gériatrie de Montréal, Canada. Par-
ticipants gave their written informed consent to take part in the studies,
which were approved by the research ethics board of the Quebec
BioImaging Network (BLIND, MOTOR), as well as the ethics board of
the Centre for Interdisciplinary Research in Rehabilitation of Greater
Montreal (BLIND). The BLIND dataset was composed of 14 congenitally
blind volunteers recruited through the Nazareth and Louis Braille Insti-
tute (10 males, age range = 26–61 yrs) and 17 sighted controls
(8 males, age range = 23–60 yrs). The MOTOR sample included 54
healthy young participants (33 males, age range = 19–33 yrs).

Acquisition
Resting-state fMRI scanswere acquired on a 3 T Siemens TrioTim for

all datasets. One single run was obtained per subject for either the
SCHIZO or BLIND dataset while two runs were acquired in each subject
for the MOTOR dataset, one immediately preceding and one following
the practice on a motor task. For the SCHIZO dataset, 150 EPI blood-
8 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.
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oxygenation level dependent (BOLD) volumes were obtained in 5 min
(TR = 2 s, TE = 29 ms, FA = 75°, 32 slices, voxel size 3 × 3 × 4 mm3,
matrix size 64 × 64), and a structural image was acquired using a
multi-echo MPRAGE sequence (TR = 2.53 s, TE = 1.64, 3.5, 5.36, 7.22,
9.08 ms, FA = 7°, 176 slices, voxel size 1 × 1 × 1 mm3, matrix size
256× 256). For the BLINDdataset, 136 EPI BOLD volumeswere acquired
in 5 min (TR = 2.2 s, TE = 30 ms, FA = 90°, 35 slices, voxel size =
3 × 3 × 3.2 mm3, gap = 25%, matrix size = 64 × 64), and a structural
image was acquired using a MPRAGE sequence (TR = 2.3 s, TE =
2.91 ms, FA = 9°, 160 slices, voxel size = 1 × 1 × 1.2 mm3, matrix
size = 240 × 256). For the MOTOR dataset, 150 EPI volumes were re-
corded in 6 min 40 s (TR = 2.65 s, TE = 30 ms, FA = 90°, 43 slices,
voxel size = 3.4 × 3.4 × 3 mm3, gap = 10%, matrix size = 64 × 64),
and a structural image was acquired using a MPRAGE sequence
(TR = 2.3 s, TE = 2.98 ms, FA = 9°, 176 slices, voxel size =
1 × 1 × 1 mm3, matrix size = 256 × 256).

Motor task
Between the two rest runs of theMOTOR experiment, subjects were

scanned while performing a motor sequence learning task with their
left non-dominant hand. 14 blocks of motor practice were interspersed
with 15 s rest epochs. Motor blocks required subjects to perform 60 fin-
ger movements, ideally corresponding to 12 correct five-element finger
sequences. The duration of the practice blocks decreased as learning
progressed. It should be noted that the effect of motor learning per se
on the subsequent rest run could not be distinguished from that of a
mere motor practice/fatigue effect in the present experimental setting.

Preprocessing
Each fMRI dataset was corrected for inter-slice difference in acquisi-

tion time and the parameters of a rigid-bodymotionwere estimated for
each time frame. Rigid-body motion was estimated within as well as
between runs, using the median volume of the first run as a target.
The median volume of one selected fMRI run for each subject was
coregistered with a T1 individual scan using Minctracc (Collins and
Evans, 1997), whichwas itself non-linearly transformed to theMontreal
Neurological Institute (MNI) template (Fonov et al., 2011) using the
CIVET pipeline (Ad-Dab'bagh et al., 2006). TheMNI symmetric template
was generated from the ICBM152 sample of 152 young adults, after 40
iterations of non-linear coregistration. The rigid-body transform, fMRI-
to-T1 transform and T1-to-stereotaxic transform were all combined,
and the functional volumes were resampled in the MNI space at a
3 mm isotropic resolution. The scrubbing method of Power et al.
parcels on connectome-wide association studies in fMRI, NeuroImage
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(2012), was used to remove the volumes with excessive motion (frame
displacement greater than 0.5 mm). A minimum number of 60
unscrubbed volumes per run, corresponding to ~ 180 s of acquisition,
was then required for further analysis. For this reason, some subjects
were rejected from the subsequent analyses: 16 controls and 29 schizo-
phrenia patients in the SCHIZO dataset (none in either the BLIND or
MOTOR datasets). The following nuisance parameters were regressed
out from the time series at each voxel: slow time drifts (basis of discrete
cosines with a 0.01 Hz high-pass cut-off), average signals in conserva-
tive masks of the white matter and the lateral ventricles as well as the
first principal components (95% energy) of the six rigid-body motion
parameters and their squares (Giove et al., 2009). The number of con-
founds regressed from the individual time series ranged from 12 to 18
for the MOTOR sample, from 11 to 15 for the BLIND sample, and from
10 to 17 for the SCHIZO sample. The fMRI volumes were finally spatially
smoothedwith a 6mm isotropic Gaussian blurring kernel. Note that the
preprocessed fMRI time series for the COBRE experiment have been
made publicly available9.

Multiresolution parcellation
Brain parcellations were derived using BASC separately for each

dataset, while pooling the patient and control groups in the SCHIZO
and BLIND datasets, and runs in the MOTOR dataset. The BASC used
100 replications of the clustering of each individual time series, using
circular block bootstrap, and 500 replications of the group clustering,
using regular bootstrap. The functional group clusters were first gener-
ated on a fixed regular grid, from 10 to 300 clusters with a step of 10,
identical for all three real datasets. TheMSTEPS procedure was then im-
plemented to select a data-driven subset of resolutions approximating
the group stability matrices up to 5% residual energy, through linear
interpolation over selected resolutions.

General linear model
For all GLM analyses, the covariates included an intercept, the age

and sex of participants as well the average frame displacement of the
runs involved in the analysis (two covariates of frame displacement
were used in the MOTOR dataset, one per run). The contrast of interest
was on a dummy covariate coding for the difference in average connec-
tivity between the two groups for SCHIZO and BLIND, and on the inter-
cept (average of the difference in connectivity pre- and post-training)
for the MOTOR dataset. Note that for the motor dataset the difference
in connectivity between the second run and the first run was entered
in the group-level GLM, in place of the individual connectome. All covar-
iates except the intercept were corrected to a zero mean.

Modeling assumptions
The parametric GLM relies on a series of assumptions, most critically

the normality of distribution of the residuals of the tests, and the homo-
scedasticity of residuals, i.e. equal variance across subjects. For each con-
nection and each contrast, the normality of distribution for the residuals
of the regression was tested with a composite test10: Shapiro–Francia
for platykurtic distributions and Shapiro–Wilk for leptokurtic distribu-
tions (Royston, 1993). A test for homoscedastic residuals was also im-
plemented using the procedure of White (1980), where all variables
as well as their two-way interactions (including squared variables)
were regressed against the square of the residuals, and an F test was
performed on the combination of all exploratory variables. A p value
was generated at each connection, both for the normality and the ho-
moscedasticity tests, for the highest resolution selected by MSTEPS,
and multiple comparisons across all connections were corrected with
9 http://figshare.com/articles/COBRE_preprocessed_with_NIAK_0_12_4/1160600.
10 As implemented in the swtest.m procedure http://www.mathworks.com/
matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests/
content/swtest.m, retrieved on 12/2014.
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the FDR-BH procedure (q b 0.05). In addition to the MOTOR, BLIND
and SCHIZO datasets, the Cambridge dataset previously used in the
simulations was also employed here. The GLM only included an
intercept and an arbitrary group difference, for different sample sizes
(N ∈ {40,100,180}), in order to investigate how the testing of assump-
tions behaved for different sample sizes.

Results

Modeling assumptions
No tests of departure from normality passed correction for multiple

comparison using FDR-BH at q b 0.05. However, some trends towards
significancewere observed in all datasets, in particularwith a large sam-
ple size. For a threshold of p b 0.05, uncorrected for multiple compari-
sons, the normality hypothesis was rejected for 9 %, 6.8 % and 11 % of
connections, for the MOTOR, BLIND and SCHIZO experiments, respec-
tively (Supplementary Fig. S13).

No test for heteroscedasticity survived a correction for multiple
comparisons with FDR-BH at q b 0.05, and there was no apparent
trend. At p b 0.05, the homoscedasticity hypothesis was rejected for
3.4 %, 4.2 % and 7.4 % of connections in the MOTOR, BLIND and SCHIZO
experiments, respectively. The trends observed for heteroscedasticity
testing were similar to those observed in the Cambridge dataset, using
random subgroups that are thus in fact homoscedastic (Supplementary
Fig. S14).

Multiresolution discoveries
The MSTEPS procedure selected 6 resolutions for the MOTOR and

BLIND samples, and 7 on the SCHIZO sample, ranging from 7 to 300+,
see Table S1 for multi-level resolution parameters. The GLM-
connectome detection generated maximal percentages of discoveries
at low resolutions for the three datasets (Fig. 7). Using a grid from 10
to 300 resolutions with a step of 10, peak discoveries were detected at
resolution 10 for the SCHIZO and MOTOR contrasts, and resolution 20
for the BLIND contrast. Peak percentages of discoveries were 30%, 2.3%
and 15%, for the SCHIZO, BLIND and MOTOR contrasts, respectively.
The omnibus test was significant (p b 0.05) for all three contrasts,
whether using a large grid of 30 resolutions or the 6–7 resolutions iden-
tified with MSTEPS. The overall trend was that the rate of discoveries
decreased as the number of parcels increased,with the largest discovery
rate found below resolution 50, followed by a notable plateau from50 to
100 clusters. These relationships between discovery rate and resolu-
tions shared similarities with the sensitivity plots observed on simula-
tions (Figs. 3, 6). While the absolute percentages of discoveries were
quite different for the three datasets, the relative changes in discovery
rate as a function of resolution were thus rather similar.

Spatial distribution of significant discoveries
Discovery percentage maps revealed which parcels were associated

with the largest proportion of significant connections for any given par-
cel, see Fig. 8 for a representation of the BASC multiresolution parcels
and associated discovery percentage maps for the SCHIZO analysis. For
each contrast, results were shown for all 6–7 resolutions extracted
with the MSTEPS procedure. The areas showing maximal percentage
of discoveries were quite different for the three datasets (Fig. 9). Wide-
spread effects were observed for the SCHIZO dataset at both cortical and
subcortical levels (see also Fig. 8, for a volumetric representation). Par-
cels with the highest discovery rate were found in the temporal cortex,
the medial temporal lobe, the anterior cingulate cortex and the basal
ganglia. The BLIND contrast revealedmore localized effects, in the occip-
ital cortex and to a lesser extent in the temporal and frontal cortices.
Finally, the MOTOR contrast identified significant effects within an ex-
tended visuomotor cortico-subcortical network.

Despite the highest rate of discoveries being observed at very low
resolutions (10 and 20), the spatial distributions of discoveries were
fairly consistent across resolutions. It was also interesting to note that
parcels on connectome-wide association studies in fMRI, NeuroImage
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Fig. 7. Percentages of discovery as a function of resolutions (number of brain parcels). Plots show the percentage of discovery for the MOTOR, BLIND and SCHIZO contrasts. For each res-
olution, the percentage of discoverywas evaluated for tests at a single parcellationwith the specifiednumber of parcels. The blue curve represents the resolutions selectedon a regular grid,
from 10 to 300 with a step of 10, and the red crosses show the resolutions selected by the MSTEPS procedure (see text for details).

Fig. 8.MSTEPS parcels and percentage of discoverymaps in the SCHIZO contrast, in volumetric space. Networks show the functional brain parcellations for the 7MSTEPS resolutions. Cor-
responding percentage discovery maps show the percentage of connections with a significant effect, for each brain parcel. MNI coordinates are given for representative slices
superimposed onto the MNI 152 non-linear template.
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Fig. 9. Percentage of discoverymaps in the three real datasets for allMSTEPS resolutions. Surfacemaps show the percentage of connectionswith a significant effect, for eachbrain parcel, in
respectively the SCHIZO, BLIND and MOTOR contrasts. Maps are projected onto the MNI 2009 surface. See Fig. 8 for volumetric representations showing results at the subcortical level in
the SCHIZO contrast.
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the resolution with highest overall discovery rate did not always pro-
vide the highest discovery rate for a given brain parcel. For instance,
the proportion of connections showing a significant effect in the basal
ganglia for the SCHIZO contrast became maximal at resolution 55,
once the thalami were isolated as a single parcel (Fig. 8). As another
example, the dorsolateral prefrontal cortex only showed a significant
effect in the BLIND contrast for functional brain parcellations above
resolution 40 (Fig. 9).
Please cite this article as: Bellec, P., et al., Impact of the resolution of brain
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Seed-based maps of t-statistics
The maps of discovery rate did not characterize which specific con-

nections were identified as significant for each parcel, nor the direction
of the effect (i.e. an increase vs a decrease in connectivity). We illustrat-
ed how these questions can be explored using the SCHIZO dataset, as it
showedwidespread changes in functional connectivity. The percentage
of discoverymapswere used to select a number of seed parcels of inter-
est, i.e. showingmaximal effects (Fig. 10). Parcels selected at the highest
parcels on connectome-wide association studies in fMRI, NeuroImage
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Fig. 10.Group FDR-corrected t-testmaps in the SCHIZO dataset, in volumetric space. t-Testmaps showed significant alterations (q b 0.05 for FDR-BH) in functional connectivity (decreases
and increases) in schizophrenia for the 7 MSTEPS resolutions and several seeds. The seed that included the hippocampus, the anterior cingulate and the thalami were shown as stroke
white parcels at all resolutions. Intra-parcel changes in connectivity were thus not shown for seeds (e.g., decreased connectivity within the basal ganglia). The z MNI coordinates were
given for representative slices superimposed onto the MNI 152 non-linear template.
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resolutions corresponded to the hippocampus, anterior cingulate cortex
and thalamus. Corresponding parcels for lower resolutions were se-
lected based on their maximal overlap with the parcels chosen at
the highest resolutions. For instance, the most distributed parcel
encompassing the hippocampus at resolution 7 covered the whole
medial temporal lobe, the temporal pole and ventral prefrontal cor-
tex. For each brain parcel, a FDR-corrected t-test map associated
with the contrast of interest was generated. These t-test maps re-
vealed that the alterations in functional coupling in schizophrenia
essentially took the form of a decrease in connectivity for the hippo-
campus and associated regions as well as for the anterior cingulate
cortex and its associated parcel. By contrast, the thalamus and
basal ganglia showed an increase in functional connectivity with
the occipital cortex, beyond decreased connectivity within the
basal ganglia.

Impact of resolution on statistical maps
While visual exploration of the t-testmaps in the SCHIZO dataset re-

vealed similarities of the effects across resolutions, it also highlighted
some specificities. High resolutions indeed proved in some cases to be
Please cite this article as: Bellec, P., et al., Impact of the resolution of brain
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additionally informative compared to low resolutions, despite de-
creased overall detection rate. For instance, the parcel centered on the
hippocampus was seen to be more positively connected with the thala-
mus and caudate nucleus in schizophrenia only when the ventral pre-
frontal cortex was not part of the parcel (Fig. 10). As another example,
the thalamus showed increased connectivity with a large sensorimotor
cortical parcel at resolution 25 and above only, when it was not part of
the same parcel as the putamen. Furthermore, the thalamus only
showed a significant decrease in connectivity with the dorsolateral
prefrontal cortex at resolution 55 and above, when isolated as a single
parcel rather than smoothed out inside the basal ganglia.

We more formally tested the level of correspondence of the effects
across resolutions for the three seeds listed above in the SCHIZO dataset,
as well as for seeds matching our a priori in the BLIND and MOTOR
datasets, respectively located in the right primary visual cortex and
the left primarymotor cortex. Pairwise comparisons between spatial ef-
fect maps across resolutions mostly revealed positive correlation values
in all three datasets and for all seeds (Fig. 11). Correlations for the three
seeds investigated in the SCHIZO contrast were as follows: hippocam-
pus (mean, standard deviation, minimum, maximum = 0.86, 0.06,
parcels on connectome-wide association studies in fMRI, NeuroImage
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Fig. 11. Correspondence of effects maps across resolutions for the three real datasets.
Correlation matrices show pairwise comparisons between 7 and 6 MSTEPS resolutions
of the effects maps for three selected seeds in the SCHIZO dataset and one a priori seed
in each of the BLIND and MOTOR dataset.
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0.76, 0.97), anterior cingulate (0.41, 0.39, −0.20, 0.93), and thalamus
(0.78, 0.09, 0.64, 0.94). High correlations were always observed when
comparing high resolutions (above resolution 55) between them. Com-
parisons between low and high resolutions remained associated with
high correlations values for two out of the three seeds, namely the hip-
pocampus and thalamus. However, results for the anterior cingulate
demonstrated that a low correspondence between low and high resolu-
tions was possible. Results for the seeds in the BLIND (0.71, 0.15, 0.46,
0.93) and MOTOR (0.80, 0.08, 0.70, 0.95) datasets further supported
the general conclusions drawn from the SCHIZO dataset.

Discussion

Specificity in multiresolution analysis

This work investigated empirically how the resolution impacts GLM
analyses on connectomes, in particular in terms of specificity. We con-
firmed on realistic simulations the validity of a FDR control using the
BH procedure at a single resolution. On three real datasets, there was
no sign of substantial departure from the assumptions of a basic para-
metric GLM. The censoring of time frames with excessive motion will
still very likely introduce somedeparture from the homoscedasticity as-
sumption, albeit small. Future work may investigate the gains of more
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general GLM procedures able to accommodate heteroscedasticity of
the residuals.

We also investigated the specificity of GLM-connectome analyses
across resolutions. We notably tested empirically the hypothesis of
Efron (2008) that the FDR would be controlled across resolutions in
the presence of a strong signal. We did identify two regimes: a “liberal”
regimewhere the FDR across resolutions is inflated compared to the FDR
within resolution, and an “exact” regime where the FDR within and
across resolutions precisely match. The “liberal” regime corresponded
to situations where effects are either weak or present at very few
connections.

As a partial remedy, the proposed omnibus test was found to appro-
priately control the overall FWE across resolutions. However, even
when combinedwith the omnibus test, we still observed simulation set-
tings where the FDR across resolutions departed from nominal levels
(e.g. Fig. 5). This may be sufficient for a descriptive analysis that does
not critically rely on significance testing, such as the quantification of
similarities between statistical maps. In such cases, the omnibus test
simply guarantees that the similarities between resolutions are at
least in part attributable to true associations. For proper control of the
FDR, GLM-connectome analysis should thus be implemented at a single
resolution, selected ahead of times, or new methods would need to be
developed to correct for multiple comparisons across resolutions.

Sensitivity across resolutions

We found some clear evidence on simulations for increased sensitiv-
ity at certain resolutions for the FDR-BH procedure in GLM-connectome
analyses. For independent tests, the sensitivity decreased sharply with
resolution, to reach a plateau around resolution 50. This behavior ap-
peared to be a consequence of multiple testing in the FDR-BH proce-
dure, as the proportion of true non-null hypothesis and the effect size
were maintained strictly constant across resolutions. For dependent
tests, the resolution directly impacted the effect size, as some test clus-
tersmatched better the underlying simulated signals than others. How-
ever, when the true and test clusters matched, the same trends as in the
simulations for independent tests were observed. On real data, highest
discovery rates were found below 50 parcels. This profile resembled
most closely the sensitivity results from simulations with independent
tests, and may reflect some intrinsic property of the FDR-BH procedure.
The simulation experiments suggest that increased sensitivity of the
FDR-BH procedure at low resolutions likely explain this increase in dis-
covery rate. In particular, resolutions larger than 100, routinely used
with the AAL template (Tzourio-Mazoyer et al., 2002), was systemati-
cally associated with a much smaller discovery rate than lower resolu-
tions (below 50). There thus appears to be a trade-off to be made with
the FDR-BH procedure between sensitivity and resolution, similar to
what was observed with the NBS procedure (Zalesky et al., 2010a). In
other words, our ability to detect an effect (increased at low resolution)
seems to be competing with our ability to tell which particular brain
connections is showing this effect (increased at high resolution). For ex-
ample, the BASC procedure tends to merge homologous regions into a
single parcel for low resolutions. An explicit testing of connectivity be-
tween homologous regions would require using fairly high resolutions
(200+).

What is a good resolution of brain parcellation?

In the three real data experiments, we did not identify strong dis-
crepancies between statistical maps generated at different resolutions,
consistent with the observations of Shehzad et al. (2014). More specifi-
cally, on real data, statistical maps at resolutions above 30 matched
closely the maps generated with several hundreds of parcels. Taken to-
gether with our evaluation of sensitivity across resolutions, our findings
support the use of a single resolution, around30, thatwill provide an ac-
curate approximation of effect maps observed at higher resolutions,
parcels on connectome-wide association studies in fMRI, NeuroImage
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while being associated with larger discovery rates and, likely, sensitivi-
ty. There may still be structures best observed at different resolutions.
For example, the difference in thalamic connectivity in the SCHIZO anal-
ysis was better seen at resolution 55 and above, where the thalamiwere
clustered in one parcel rather than aggregated with the putamen and
caudate nuclei. The multiresolution may thus prove useful to identify
resolutions tailored to specific brain structures or specific experimental
conditions to be used in future, independent studies. Note that it would
not be advisable to exploremultiple resolutions, and then simply report
results at the resolutionwith the highest discovery rate. There would be
no guarantee that the FDRwould be controlled for a resolution that was
selected precisely because of a high associated discovery rate, a classic
case of circular analysis.

Biological plausibility of effects on real datasets

The effects found on the real datasets were consistent with the
existing literature. First, schizophrenia has been defined as a
dysconnectivity syndrome, with aberrant functional interactions
between brain regions being a core feature of this mental illness
(for reviews, see Calhoun et al., 2009; Pettersson-Yeo et al., 2011;
Fornito et al., 2012). As shown here for two out of three parcels,
and observed for other unreported brain parcels, widespread de-
crease in connectivity was observed in patients, with the addition
of more localized increases in connectivity. The prominence of
decreases in connectivity in the temporal lobe, hippocampus and
anterior cingulate cortex, amongst other regions, is well supported
by previous studies (Williamson and Allman, 2012). Similarly, in-
creased connectivity between the thalamus and sensorimotor cor-
tex but decreased connectivity with striatal and prefrontal regions
has been reported before (Anticevic et al., 2014). Second, resting-
state fMRI studies have previously shown that congenital blindness
is associated with a reorganization of the interactions between the
occipital cortex and other parts of the brain, in particular the audi-
tory and premotor cortices (Liu et al., 2007; Qin et al., 2013, 2015),
consistent with our findings. Finally, our results are in agreement with
the observation that brain activity at rest is modulated by previous in-
tensive motor practice (Albert et al., 2009; Vahdat et al., 2011; Sami
et al., 2014). Even in the absence of a definite ground truth on these
real life applications, our findings thus had good face validity, and sug-
gested that GLM-connectome analysis could be successfully applied to
a variety of clinical or experimental conditions.

Impact of resolution on alternative statistical methods

Wedid observe a strong impact of resolution on the statistical power
of the FDR-BH procedure, yet other statistical approaches may behave
quite differently regarding resolution. Shehzad et al. (2014) developed
a multivariate test that applies on a region-to-brain connectivity map,
called multivariate distance matrix regression (MDMR). Because the
test relies on the similarity between maps across subjects, and because
statistical maps are well approximated even with 30 brain parcels, we
expect this procedure to be relatively insensitive to the resolution of
the parcellation. This procedure would be used to screen for promising
seed-based connectivity maps worthy to explore in a subsequent, inde-
pendent analysis. TheMDMRapproach effectively performs one test per
parcel, instead of one test per connection, and thus greatly alleviates the
multiple comparison problem. It does not however provide a control of
statistical risk at the level of single connections. Zalesky et al. (2010a)
proposed to use uncorrected threshold on the individual p-values, but
then to identify to which extent the connections that survive the test
are interconnected. This extent measure is compared against what
could be observed under a null hypothesis of no association, imple-
mented through permutation testing. This approach, called Network-
Based Statistics (NBS), is the connectome equivalent to the “cluster-
level statistics” used in SPMs. The NBS only offers a loose control of
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false-positive rate at the level of a single connection, but can be used
to reject the possibility that a group of significant findings could be ob-
served by chance in the FWE sense. The NBS has been found to outper-
form the FDR-BH when the connections with significant effects are
indeed interconnected. The validity of this assumptionmay be quite de-
pendent on the resolution of the parcellation. An interesting direction
for future work is therefore to investigate how CWAS techniques such
as FDR-BH, MDMR and NBS compare as a function of the resolution of
parcels, while existing comparisons have been limited to a fixed resolu-
tion (Zalesky et al., 2012).

Of note is the recentwork ofMeskaldji et al. (2014), which combines
two resolutions to perform connectome-wide testing: the low resolu-
tion is used to screen for promising groups of intra- or inter-parcel con-
nections, and the tests at high resolution are re-weighted based on that
screening. The weights can be adjusted to ensure control of the FDR
across the connectome. This alternative approach to multiresolution
testing is limited to two resolutions, but may provide additional statisti-
cal power compared to simply replicating the GLM analysis indepen-
dently at two resolutions independently as was done here.
Beyond resolution selection: choice of the brain parcellation

We only briefly examined here how the choice of parcels, and
not just their number, could impact sensitivity. We could, for exam-
ple, have used random parcellations, like (Zalesky et al., 2010b), a
parcellation based on anatomical landmarks such as the AAL atlas
(Tzourio-Mazoyer et al., 2002), or a functional parcellation with
spatial connexity constraints (Craddock et al., 2012). From our re-
sults on simulations, it seems clear that dramatic differences in sta-
tistical power can be achieved at a given spatial resolution, if a set of
parcels is best adapted to the spatial distribution of an effect. The
work of Craddock et al. (2012) suggested that functional brain par-
cels are more homogeneous than anatomical parcels. We believe
that important improvement in sensitivity could be gained from
the optimization of the parcellation scheme, rather than resolution,
and this represents an important avenue for future research. Fol-
lowing an idea initially explored in Thirion et al. (2006), it may
even be possible to relax the constraint of identical parcels across
subjects, by matching different individual-specific parcels and use
this correspondence to run group-level GLM-connectome analysis.
Conclusion

Our overall conclusion is that the GLM analysis of connectomes with
control of the FDR using the BH procedure is statistically valid when
used at a single resolution, and has the potential to identify biologically
plausible associations in a variety of experimental conditions. Caution
should be exercised when replicating a GLM-connectome analysis at
different resolutions, as the FDR over the tests combined across all res-
olutions may depart from the FDR within resolution. We proposed a
valid omnibus test, combiningfindings across all resolutions to establish
the overall presence of true effects. This test can be used for exploratory
analysis of the impact of resolution on the results of a GLM-connectome
analysis. We observed that the statistical maps generated at resolution
30+ were highly similar on three real datasets, and that the rate of
discovery decreased sharply after resolution 50. An analysis using a
single resolution in the range of 30 to 50 brain parcels thus appears as
a reasonable default option, likely to have a sensitivity superior to the
common approach using 100+ brain parcels in many settings. A
mulitresolution GLM-connectome pipeline is available in the NIAK
package11 (Bellec et al., in press), a free and open-source software that
parcels on connectome-wide association studies in fMRI, NeuroImage
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runs in matlab and GNU octave, and we also publicly released a set of
multiresolution functional brain parcellations 12.
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AppendixA. Generationof statistical parametric connectomesunder
the global null hypothesis

Let Y(K) be the (subjects × connections) matrix of individual
connectomes at resolution K. A replication of the connectome matrix
under the global null hypothesis ðG0Þ is generated by recomposing the
linear mixture while excluding the c-th covariate of interest, tested
by the model. Formally, let X c be the reduced model where the c th

covariate has been removed from the (subjects × covariates) matrix

X. Let B̂ ðKÞ
c be the ordinary least square estimate of the regression co-

efficients using the reduced model. Each permutation sample of the
dataset is generated as described in (Anderson, 2002):

Y K;�ð Þ ¼ X cB̂
Kð Þ
c þ Ê

K;�ð Þ
: ðA:1Þ

where Ê(K,⁎) is a replication of the residuals of the regression of the
reduced model, with permuted rows (subjects). The GLM procedure
is then implemented with the Y(K,⁎) and the full model X to generate
a replication VK

(⁎) of the volume of discoveries at resolution K under ðG0Þ.
Because the same dataset at voxel resolution is used to generate all

the connectome datasets (Y (K))s, the samples Vs(⁎) are not independent.
In order to respect these dependencies, for any given replication, the
same permutation of the subjects is used to generate to all of the
(Ê(K,⁎))K. The replication of the total volume of discoveries V (⁎) is then
simply the sum of VK

(⁎) for all K. This procedure is repeated B times in
order to generate B replications (V (⁎ b))b = 1

B of the total volume of dis-
coveries under ðG0Þ. The Monte-Carlo estimation of the probability to
observe a greater total volume of discoveries under ðG0Þ than the actual
total volume of discoveries V generated on the original (non-permuted)
dataset is then:

Pr V �ð Þ ≥V jG0

� �
≐# b ¼ 1;…;BjV �bð Þ≥V

n o
=B ðA:2Þ

where ≐ means that the two terms are asymptotically equal as B tends
towards infinity.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.07.071.
13 https://computecanada.org/.
14 http://www.clumeq.mcgill.ca/.
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