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Abstract Blindness represents a unique model to study how
visual experience may shape the development of brain orga-
nization. Exploring how the structure of the corpus callosum
(CC) reorganizes ensuing visual deprivation is of particular
interest due to its important functional implication in vision
(e.g., via the splenium of the CC). Moreover, comparing early
versus late visually deprived individuals has the potential to
unravel the existence of a sensitive period for reshaping the
CC structure. Here, we develop a novel framework to capture
a complete set of shape differences in the CC between

congenitally blind (CB), late blind (LB) and sighted control
(SC) groups. The CCs were manually segmented from T1-
weighted brain MRI and modeled by 3D tetrahedral meshes.
We statistically compared the combination of local area and
thickness at each point between subject groups. Differences in
area are found using surface tensor-based morphometry;
thickness is estimated by tracing the streamlines in the volu-
metric harmonic field. Group differences were assessed on
this combined measure using Hotelling’s T2 test. Interestingly,
we observed that the total callosal volume did not differ
between the groups. However, our fine-grained analysis re-
veals significant differences mostly localized around the
splenium areas between both blind groups and the sighted
group (general effects of blindness) and, importantly, specific
dissimilarities between the LB and CB groups, illustrating the
existence of a sensitive period for reorganization. The new
multivariate statistics also gave better effect sizes for detecting
morphometric differences, relative to other statistics. They
may boost statistical power for CC morphometric analyses.

Keywords Corpus CallosumThickness . Volumetric
Laplace-Beltrami Operator . Blindness . Multivariate
Tensor-basedMorphometry (mTBM)

Introduction

Blindness is known to induce functional and structural brain
reorganizations (Bavelier and Neville 2002; Noppeney 2007).
In combination with recent advances in the collection and
databasing of brain magnetic resonance imaging (MRI), ana-
tomical and functional MRI analysis methods have begun to
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shed light on blindness adaptation mechanisms (Amedi et al.
2003; Leporé et al. 2009; Jiang et al. 2009; Park et al. 2009;
Bedny et al. 2011; Voss and Zatorre 2012; Wang et al. 2013a;
Dormal et al. 2012; Collignon et al. 2011b). As a non-invasive
and high-throughput analysis tool, neuroimaging can help
better understand the neuroanatomical correlates of blindness,
cross-modal plasticity and its relationship to sensitive/critical
periods in brain development. The study of brain reorganiza-
tion from blindness acquired at different developmental pe-
riods has therefore the potential to provide important new
insights on how visual experience shapes the structure/
function of specific brain regions (Ricciardi and Pietrini
2011; Collignon et al. 2009, 2013b). At a structural level,
significant gray and white matter reductions throughout the
visual system have been observed in early-blind individual
(Noppeney et al. 2005; Pan et al. 2007; Ptito et al. 2008).
Several groups have also shown significant atrophy in the
geniculocortical tracts using diffusion imaging (Shimony
et al. 2006; Park et al. 2007; Shu et al. 2009). The existence
of important reorganizations of regions typically supporting
the processing or the transfer of visual signals poses crucial
challenges for sight-restoration (Merabet et al. 2005).
Addressing this issue is particularly timely now given the
recent advent of sight-restoration techniques including oph-
thalmologic procedures, stem cell transplantation, genetic
therapies, as well as retinal prosthetic devices (Merabet et al.
2007; Veraart et al. 2004; Belluck 2013; Sieving et al. 2006).
Beyond the remaining technical limitation of each procedure,
the effects of rehabilitation therapies may depend on the
integrity of the visual pathways and areas (Levin et al.
2010). Importantly, reorganization in brain structure typically
supporting vision appears to depend on the period of blindness
onset, with higher changes expected in association with early
visual deprivation (Collignon et al. 2013a; Voss et al. 2013). A
better understanding of how visual deprivation affects brain
anatomy may therefore help rehabilitation prognostic and
design in visually deprived individual candidates for sight
restoration.

The corpus callosum (CC) is a particularly interesting
subcortical structure to study in blind individuals (Leporé
et al. 2010; Bock et al. 2013). The CC is the largest fiber
bundle in the brain and establishes connections between the
hemispheres, and predominantly, but not solely, between the
cortical areas (Caleo et al. 2013). In particular, the splenium at
the posterior end of the CC carries inter-hemispheric fibers
connecting the visual areas of the brain. The splenium con-
nects the right and left primary visual regions, which map the
contralateral visual hemifields, in order to seamlessly integrate
both visual fields across the vertical meridian (Pandya et al.
1971). Recently, a more detailed view of the structural orga-
nization of the splenium has been provided by demonstrating
the existence of a dorsal/ventral mapping and eccentricity
gradient of human splenial fibers (Dougherty et al. 2005).

Moreover, the isthmus of the CC is involved in visuo-spatial
processing, as it contains fibers connecting the posterior pari-
etal areas of both hemispheres, which fuse multimodal senso-
ry information (Hofer and Frahm 2006).

The CC undergoes extensive myelination during develop-
ment until adolescence, and waves of peak growth rates can be
observed in the CCs of children of different ages (Hua et al.
2009; Steele et al. 2013). Hence, studying the respective
impact of congenital (CB) versus late blindness (LB) on the
anatomy of the CC provides a unique model to probe how
experience at different developmental periods shapes the
structural organization of the brain (Noppeney 2007).
However, how visual deprivation affects the structure of the
corpus callosum is still a matter of debate. Some studies
suggest that early acquired blindness leads to a reduction in
splenial white matter volume (Leporé et al. 2010; Levin et al.
2010; Shimony et al. 2006). However, Bridge et al. (2009) did
not find any structural differences within the splenium of
anophthalmic subjects. Moreover, a recent study demonstrat-
ed that the large-scale topographic organization of visual
callosal connections within the splenium (dorsal/ventral and
eccentricity mapping) remains unaffected in early blind indi-
viduals (Bock et al. 2013). This last study therefore suggests
that the gross retinotopic organization of visual fibers within
the splenium develops and is maintained independently from
any pre- or postnatal retinal input, and that changes as a result
of blindness in this pathway may occur as white matter con-
nections innervate cortex, rather than within the tracts them-
selves .

To ensure the use of all the shape information available in
CC, we propose a novel analysis pipeline that includes the
whole 3D CC structure (Xu et al. 2013b). We model the CC
with 3D tetrahedral meshes and combine CC area and thick-
ness measures in a vector at each vertex to be used as a metric
for the statistical analysis of CC shape morphometry. To
calculate thickness, we apply the volumetric Laplace-
Beltrami operator proposed in our prior work (Wang et al.
2004a), which is now the de facto standard in volumetric
harmonic map research (Wang et al. 2004b, 2012a, 2013b;
Li et al. 2007, 2013; Tan et al. 2010; Pai et al. 2011; Paillé and
Poulin 2012; Xu et al. 2013a). By solving the Laplace’s
equation, we construct a harmonic field on each of the CC
tetrahedral meshes. Thickness is then determined from the
streamlines of the harmonic field.

We use multivariate surface tensor-based morphometry to
analyze differences in local area of the CC between subject
groups. In the field of computational anatomy, tensor-based
morphometry (TBM) (Davatzikos et al. 1996; Chung et al.
2008; Thompson et al. 2000) and more recently its multivar-
iate extension, multivariate TBM (mTBM) (Leporé et al.
2008; Wang et al. 2010), have been used extensively to detect
regional differences in surface and volume brain morphology
between two groups of subjects (Wang et al. 2011, 2012c,
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2013c; Shi et al. 2013a, c, 2014). Prior work (Wang et al.
2011; Shi et al. 2014) combining mTBM with other statistics
such as the radial distance significantly improved statistical
power. Intuitively, thickness and mTBM are complementary,
as thickness describes distances roughly along the surface’s
normal direction, while mTBM detects surface dissimilarities,
including differences in the surface metric tensor induced by
the particular surface parameterization. So we hypothesize
that the combination of thickness and mTBM will offer a
complete set of surface statistics for callosal morphometry
and that it may boost statistical power to detect the impacts
of visual experience in the CC compared to 2D mid-sagittal
analyses (Thompson et al. 2003; Luders et al. 2006, 2010;
Tepest et al. 2010; Adamson et al. 2011; Di Paola et al. 2012;
Herron et al. 2012).

In this paper, we combine thickness and mTBM to study
callosal structural differences associated with congenital- ver-
sus late-onset blindness. Prior 2D TBM analyses of the corpus
callosum (Leporé et al. 2010) revealed reductions in the
isthmus and splenium of the corpus callosum in early but
not late blind subjects when compared to sighted controls.
Direct comparisons of the early and late blind groups did not
find any significant changes, leaving open the question of how
the period of visual deprivation impacts the structure of the
CC. Here we set out to test whether subtle blindness related
changes, especially between CB and LB, might be detected by
our more powerful method.

Subjects and Methods

Subjects

Individuals with no history of neurological, cognitive or sen-
sorimotor deficits other than blindness were included in the
study and were divided into two groups. The first group
consisted of 14 congenitally blind individuals (mean age±
standard deviation (SD): 42.64±11.35; 10 males). The second
group consisted of 11 late-onset blind subjects who lost vision
after 8 years old (mean age±SD: 51.90±5.38; 3 males). Each
of these groups was compared with a healthy group of 20
sighted controls (SC; mean age±SD: 38.30±13.48; 9 males).
In all cases, blindness was attributable to bilateral peripheral
damage (including: lenticular fibroplasia, retinoblastoma, tu-
mors restricted to the eyes, retinal detachment, Leber’s con-
genital amaurosis, retinas pigmentosa, accidents affecting the
eyes and glaucoma) and led to total blindness. For brevity, we
refer to congenitally and late-onset blind subjects as CB and
LB for the rest of the paper.

The research protocol of the procedures was approved by
the research ethic and scientific boards of the Centre for
Interdisciplinary Research in Rehabilitation of Greater
Montreal and the Quebec Bio-Imaging Network.

Experiments were undertaken with the understanding and
written consent of each subject.

Processing Pipeline Overview

Here we briefly overview the processing procedures to ana-
lyze CC morphometry. Following sections are detailed expla-
nations of each step.

Figure 1 is the flow chart illustrating the overall sequence
of steps in the processing pipeline. First, wemanually segment
the callosal volume from MRI scans, which is introduced in
“Image Acquisition and Preprocessing” section. Second,
based on the binary segmentation, we construct the tetrahedral
mesh for each CC. The boundary of the tetrahedral mesh is a
triangular mesh, which we call the CC surface. The construc-
tion of tetrahedral and triangular meshes is in “Tetrahedral
Mesh and Triangular Mesh Generation” section. Third, we
apply our in-house conformal mapping to introduce a regular
conformal grid on each CC surface. Based on the conformal
parameterization, each CC surface is decomposed into two
parts: superior part and inferior part. The CC surface confor-
mal parameterization and decomposition are detailed in
“Surface Conformal Parameterization and Decomposition”
section. Fourth, the thickness of a CC is computed by apply-
ing the volumetric Laplace-Beltrami operator to solve
Laplace’s equation on its tetrahedral mesh, where the superior
and inferior parts of the CC surface are used as boundary
conditions. Each point on the CC surface thus acquires a
thickness measure. Detailed explanations of CC thickness
computation are in “Callosal Thickness Computation” sec-
tion. Fifth, we register the superior and inferior parts of the CC
surface across subjects based on its conformal parameteriza-
tion, where the thickness measures are interpolated on surface
points. The CC surface registration is detailed in “Surface
Registration” section. Finally, we compute the multivariate
tensor-based morphometry (mTBM) statistics (Wang et al.
2010) and combine them with thickness measures to form a
new multivariate statistic, which is applied to identify regions
with significant differences between any two of the three
groups. Permutation-based multiple comparison testes are
used to estimate the overall significance (corrected p-values).
The multivariate statistics and group difference analysis are
introduced in “Multivariate Morphometry Features
Computation” and “Statistical Maps and Analysis on Group
Difference” sections, respectively.

Image Acquisition and Preprocessing

For each participant, a high-resolution volumetric MRI scan
of the brain was acquired on a 3T MP-RAGE Siemens Tim
Trio MRI Scanner (Siemens Electric, Erlangen, Germany).
The scanning protocol was identical for all participants. A
structural T1-weighted 3D MP-RAGE sequence scan (voxel

Neuroinform



size: 1×1×1.2mm3; matrix size: 256×240; slices: 160;
sagittally-oriented MRI gradient echo sequence with repeti-
tion time (TR): 2300 ms; echo time (TE): 2.91 ms; inversion
time (TI): 900 ms; and field of view (FoV): 256×240 mm2)
was acquired for each subject using the same scanner,
equipped with a 12-channel head coil.

Images were aligned and scaled to the ICBM-53 brain
template (International Consortium for Brain Mapping) with
the FLIRT software (Jenkinson and Smith 2001), using nine-
parameter linear transformations (three translations, three ro-
tations and three scales). We manually segmented the CCs
with Insight Toolkit’s SNAP program (Yushkevich et al.
2006) as shown in Fig. 2. Tracings were performed by a
trained investigator (Y.K.) and the results were checked by
an experienced neuroscientist (F.L.). We consulted neuroana-
tomical references of the corpus callosum to help guide the
placement of the contours. Our intra-rater average percent

volume overlap (intersection of volumes over average of
them) for four structures segmented twice at a few months
interval is 90.07 %.

Multivariate Morphometric Analysis of the CC

Tetrahedral Mesh and Triangular Mesh Generation

Our tetrahedral meshes are generated by an adaptively sized
tetrahedral mesh modeling method (Lederman et al. 2011).
The method produces meshes conforming to the voxelized
regions in the image by minimizing an energy function
consisting of a smoothing term, a fidelity term and an elastic-
ity term. Figure 3a shows an example of a tetrahedral mesh
with a zoomed cut-plane view. The boundary of the tetrahe-
dral mesh gives a triangular surface mesh for the callosal
surface, which we call the CC surface (Fig. 3b).

Surface Conformal Parameterization and Decomposition

The goal of this step is to introduce regular conformal grids on
CC surfaces and thus consistently decompose them into supe-
rior and inferior parts of surface patches for thickness
computation.

Given the long and thin structure of a CC surface, existing
area-preserving subcortical surface parameterization algo-
rithms (e.g., (Styner et al. 2005a)) that map surfaces to spheres
as a canonical space may produce large distortions. Instead,
for accurate surface decomposition and registration, we adopt
our holomorphic one-form based method (Wang et al. 2011)
to compute a conformal parameterization for each CC surface.

First, given a callosal surface, we label two consistent
landmark curves at the caudal and rostral endpoints. They
are biologically valid and consistent landmarks across subjects

Fig. 1 Flow chart illustration of
algorithm pipeline

Fig. 2 Illustration of the corpus callosum (CC) segmentation results. On
the bottom row, the segmented volumes are depicted in green and shown
in three different views. The reconstructed callosal surface is overlaid on
MR images on the top row
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as shown in Fig. 3c (blue lines). After slicing each CC surface
open along the two landmark curves, it becomes a genus-0
surface with two open boundaries. We call this process topol-
ogy optimization. Given the callosal horizontal tube-like
shape, these landmark curves can be automatically detected
by checking the extreme points along the first principal direc-
tion of the geometric moments of the surface (Elad et al.
2004).We successfully applied similar techniques in a number
of prior works (Wang et al. 2010, 2011; Monje et al. 2013;
Colom et al. 2013; Shi et al. 2013a, c, 2014). This optimiza-
tion provides biologically plausible landmarks which may
improve the surface analysis on elongated or branching
surfaces.

Next, we compute the exact one-forms (Fig. 3d) with the
open boundary CC surfaces. Then we compute all closed but
non-exact one-forms. The harmonic one-form basis is the
union of the exact one-forms and the closed but non-exact
one-forms. By solving a linear system with the harmonic one-
form basis, we obtain the conjugates of the exact one-forms,
which are locally perpendicular to the exact one-forms
(Fig. 3e). The exact one-forms and their conjugate one-
forms form the holomorphic one-form basis, which introduces
a conformal grid on each CC surface (Fig. 3f). In Fig. 3f, the
checkerboard texture is used to illustrate the angle-preserving

property of the parameterization. For theoretical background
and implementation details of holomorphic one-form based
surface conformal parameterization, please refer to (Wang
et al. 2011). The algorithm involves solving a few linear
systems, thus it is quite stable and efficient.

On each of the parameterized CC surfaces, we generate two
iso-parametric curves which pass the extreme points on two
lateral sides. By cutting along these two curves and removing
their attached triangles in the triangle mesh, we produce
superior (Fig. 3g blue) and inferior (Fig. 3g yellow) surface
patches, which are used for the callosal thickness computation
and surface registration.

Callosal Thickness Computation

After the CC surfaces are decomposed into superior and
inferior patches, we apply a tetrahedral mesh based algorithm
to compute the callosal thickness. We adopt the volumetric
Laplace-Beltrami operator developed in our prior work (Wang
et al. 2004a), which is defined on the tetrahedral mesh, with
the decomposed CC surfaces as boundary conditions.
Compared with prior work on solving the Laplace’s equation
(e.g., (Jones et al. 2000; Adamson et al. 2011)), this approach
may overcome numerical inaccuracies issues caused by the

Fig. 3 Details of CC surface
parameterization and
decomposition. The CC
tetrahedral mesh (a) is
constructed based on the CC
binary segmentation as shown in
Fig. 2. The boundary of the
tetrahedral mesh is a triangular
mesh, which is called the CC
surface (b). In order to compute
its conformal parameterization,
two biologically valid and
consistent landmarks are
introduced on each CC surface
(c). By computing the exact
harmonic one-form (d), the
conjugate one-form (e), which is
locally perpendicular to the one-
form in (d), we finally obtain the
canonical holomorphic one-form
(e), which introduces a conformal
parameterization for the CC
surface. The conformality is
visualized by texture mapping of
a checkerboard image on the 3D
CC surface. In g, the conformal
parameterization is used to induce
two iso-parametric curves, which
cut the CC surface into two
pieces, a superior one (blue) and
an inferior one (yellow)
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limited resolution of the 3D grid in standard voxel-based
thickness computations.

Given a tetrahedral mesh M, whose boundary is the
CC surface ∂M, we denote the superior and inferior
patches as ∂M+ and ∂M−, respectively. We use vi, vj to
denote vertices and [vi, vj] to denote an edge connecting
vi, vj. Let V be the set of all vertices on M, we define a
piecewise linear function f :V→ℝ. Suppose that every
edge [vi,vj] is assigned a string constant k(vi,vj), then
the string energy on the mesh is defined as the follow-
ing quadratic form:

E fð Þ ¼< f ; f >

¼
X

vi; v j½ �∈K
k vi; v j
� �

f við Þ− f v j
� �� �

f við Þ− f v j
� �� � ð1Þ

where K is the set of all edges in the mesh. As shown
in Fig. 4a, in one tetrahedron, we say that edge [v1,v4]
is against edge [v2,v3] and θ23 is the dihedral angle. Let
l denote an edge length. Suppose an edge, [vi,vj], which
is shared by n tetrahedrons, is against n edges with
lengths lr,r=1,…n, and n dihedral angles, θr,r=1,…,n,

we can define the string constant as

k vi; v j
� � ¼ 1

12

Xn

r¼1

lrcot θrð Þ ð2Þ

With this definition of k(vi,vj), the string energy (Eq. 1) is
called the discrete harmonic energy (Wang et al. 2004a). In
our prior work (Xu 2013), we proved that the discrete har-
monic energy is consistent with the traditional harmonic en-
ergy. Here the string coefficient 1

12 is chosen to ensure that the
quadratic form in Eq. 1 is positive definite (Gu et al. 2004).

The volumetric Laplace-Beltrami operator on a vertex vi of
the tetrahedral mesh is then defined as (Wang et al. 2004a):

ΔLB f við Þ ¼
X
vi;v j½ �∈K

k vi; v j
� �

f v j
� �

− f við Þ� � ð3Þ

If f minimizes the harmonic energy, then f satisfies the
Laplace’s equation ΔLBf=0 and f is called a harmonic func-
tion. In this paper, in order to solve the Laplace’s equation, we

Fig. 4 Details of thickness
computation on CC tetrahedral
meshes. a Shows a tetrahedron
example. We say that the edge
[v1,v4] is against [v2,v3] and the
dihedral angle, θ23. This
relationship is used to define the
volumetric Laplace-Beltrami
operator. b Shows a voxel mesh
example (Wüstefeld 2010). In c,
the equipotential level sets are
shown as colored surfaces. The
left panel is a global volumetric
rendering with a transparent outer
boundary. The right panel shows
a zoomed-in picture of a cross-
section along the sagittal
direction. We then trace
streamlines between the superior
and inferior pieces of a CC
surface along the normal
directions of the level sets and the
CC thickness is measured by the
lengths of theses streamlines (d).
e is the computed thickness color
map illustrated on a callosal
surface: the red colormeans thick
and the green color means thin
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use the volumetric Laplace-Beltrami operator to construct a
linear system, whose solution is a function f that minimizes the
harmonic energy.

In the implementation, we solve the Laplace’s equation
with the Dirichlet boundary condition. Specifically, we define
the values of function f on vertices of the superior boundary
∂M+ as 0 and those on vertices of the inferior boundary ∂M− as
1. For all interior vertices on the tetrahedral mesh, their
f values are unkown but satisfy ΔLBf=0. Thus, we

define f ¼
ΔLB f vð Þ ¼ 0; ∀v∉∂M
f vð Þ ¼ 0 ; ∀v∈∂Mþ

f vð Þ ¼ 1 ; ∀v∈∂M−

8<
: on the tetrahedral

mesh M. Then we define following local stiffness ma-
trix S for all interior vertices vi on M:

Si; j ¼ k vi; v j
� �

; vi; v j
� �

∈K
0 ; vi; v j

� �
∉K

�
ð4Þ

where k(vi,vj) is defined in Eq. 2. Next, we add the contribu-
tion of the local stiffness matrix to the global stiffness matrix
and define the discrete volumetric Laplace-Beltrami operator
for a CC tetrahedral mesh as

Lp ¼ D−S ð5Þ

where D, the degree matrix, is a diagonal matrix defined as
Di,i=∑jSi,j.

Similar to surface spectral analysis (Chung 2012; Qiu et al.
2006a, b; Lombaert et al. 2013; Shi et al. 2010), we can
construct a linear system to solve Laplace’s equation,

Ap f i ¼ Bp f b ð6Þ

Suppose there are N vertices in the tetrahedral mesh M, m
of them are interior vertices and n of them are boundary
vertices, i.e., vertices on ∂M+ and ∂M−. Then Ap is an m×m
matrix, Bp is an m×n matrix and Lp ¼ Ap Bp�

�
; fi is an m×1

vector, representing the unknown function values on interior
vertices; fb is an n×1 vector, representing function values on
boundary vertices, whose values are fixed. After solving
Eq. 6, the function f acquires a value at each interior vertex.
Figure 4b shows a commonly used voxel mesh example
(Wüstefeld 2010), where each voxel is a tiny cube.
Compared with the voxel mesh, our tetrahedral mesh may
have a smoother surface and achieve sub-voxel numerical
accuracy.

After solving the Laplace’s equation, we build a harmonic
field between two surface patches. On the harmonic field, the
level sets of equal harmonic function values construct differ-
ent layers. Figure 4c shows an example of computed surface

layers. The different layers, i.e., the equipotential level sets,
are labeled with different colors. The left panel shows a
volumetric rendering. The right panel shows a zoomed-in
result after a cut along the sagittal direction. Similar to prior
work (Jones et al. 2000; Adamson et al. 2011), the streamlines
are computed by tracing the normal directions to the surface
level sets (as shown by the red lines in the zoom-in picture in
Fig. 4d). Finally, the computed streamline lengths define the
thickness profile on the callosal surface (Jones et al. 2000;
Adamson et al. 2011). Figure 4e is the thickness color map on
a CC surface, shown in two different views. The red color
means thick and the green color means thin. From the figure,
we can see that the estimated callosal thickness is well de-
fined. It may reflect the intrinsic 3D geometrical structure and
hence facilitate consistent cross-subject comparisons.

Surface Registration

To study CC shape morphometry, surface registration is re-
quired to statistically compare CC surfaces from different
subjects. A commonly applied framework for surface regis-
tration is to map each of the 3D surfaces to a canonical
parameter domain, such as a sphere (Bakircioglu et al. 1999;
Fischl et al. 1999; Yeo et al. 2010), or a planar domain
(Thompson et al. 2004b; Shi et al. 2013a), then compute a
flow in the parameter space of two surfaces, which also
induces a correspondence field in 3D. In this paper, we apply
the conformal parameterization computed with the
holomorphic one-form method (“Surface Conformal
Parameterization and Decomposition” section) to conformally
map the superior and inferior patches of a CC surface to planar
rectangles, as shown in Fig. 5a. We use the planar rectangles
as the canonical parameter domain for CC surface registration.
We then register CC surfaces across subjects using the
constrained harmonic map (Wang et al. 2011). Briefly, given
two surfaces S1 and S2, ∂S1,∂S2 are their boundaries, and τ1:
S1→ℝ2, τ2:S2→ℝ2 are their conformal parameterizations,
our goal is to compute a map ϕ:S1→S2. Instead of directly
computing ϕ with 3D surfaces, we construct a harmonic map
τ:τ1→τ2 between the parameter domains, which satisfies τ
∘τ1(S1)=τ2(S2), τ∘τ1(∂S1)=τ2(∂S2),Δτ=0. Then ϕ is obtain-
ed by ϕ=τ2

−1∘τ∘τ1. In the registration process, thickness
measurement on each surface point is interpolated.

Multivariate Morphometry Features Computation

In addition to CC thickness, we also measure CC surface
deformations using surface multivariate tensor-based mor-
phometry analysis (mTBM). After the CC surfaces are regis-
tered to a common template, the Jacobian matrix is computed
at each vertex from the deformation fields (Wang et al. 2010).
Specifically, suppose ϕ:S1→S2 is the map between two CC
surfaces S1 and S2, (u,v) are the isothermal coordinates of the
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surfaces. The map ϕ can be represented as ϕ(u,v)=(ϕu(u,v),
ϕv(u, v)) in the local parameters. Then the Jacobian matrix J of

ϕ is defined as J ¼
∂ϕu

∂u
∂ϕu

∂v
∂ϕv

∂u
∂ϕv

∂v

2
64

3
75. In practice, smooth sur-

faces are approximated by triangular meshes. Suppose a tri-
angle [v1,v2,v3] on mesh M1 is mapped to a triangle [w1,w2,
w3] on another mesh M2. First, we isometrically embed the
triangles onto ℝ2, the planar coordinates of the vertices vi,wi

are denoted by the same symbols vi,wi. Then the Jacobian
matrix can be computed as J=[w3−w1, w2−w1][v3−v1,v2−
v1]

−1. As pointed out in (Leporé et al. 2008), the determinant
of the Jacobian matrix is an important measure of local area
changes and their directions, i.e., expansion or shrinkage,
however, when many subjects are aligned to the same tem-
plate, much of the shape change information is lost using this
measure. Thus we use the deformation tensor for the analysis,

which is defined as S ¼ JT J
� �1

2. By definition, the defor-
mation tensor is a 2×2 symmetric matrix with three
distinct elements on each vertex. The directional values
of shape changes are thus kept as variables in the
analysis (Leporé et al. 2008). Furthermore, instead of
analyzing shape change directly on the deformation
tensor, a new family of metrics, the “Log-Euclidean
metrics” (Arsigny et al. 2006) is used in mTBM to
project the deformation tensors to a flat space, the
tangent plane at the origin of the manifold of deforma-
tion tensors (Leporé et al. 2008; Wang et al. 2010).

This conversion makes computations on tensors easier
to perform, as the transformed values form a vector
space, and statistical parameters can then be computed
easily using standard formulae for the Euclidean space.
In mTBM, this amounts to taking the three distinct
elements of log(S) to form a 3×1 vector, which retains
full information of the deformation tensor. Thus, mTBM
is very sensitive to deformations such as dilation and
shear along the surface tangent direction, which is per-
pendicular to the surface normal (Wang et al. 2010). On
the other hand, the callosal thickness mainly describes
morphometric changes along the surface normal direc-
tion. Thus, these two statistics are complementary to
each other. In this work, we construct a multivariate
surface morphometry feature consisting of both callosal
thickness and mTBM to boost the detection power
(Wang et al. 2011; Shi et al. 2014). Specifically, the
multivariate feature is a 4×1 vector on each vertex, as
shown in Fig. 5b.

Statistical Maps and Analysis on Group Difference

We aim to study morphological differences in the CC shape
between three visual groups. For this analysis, we linearly
covary the multivariate statistics at each pixel with subject age
and gender information (Leporé et al. 2008; Shi et al. 2013c).
Suppose [A1,A2,A3,A4]

T is the multivariate feature vector on a
vertex, let A represent any one of the four statistics, and Acov

Fig. 5 CC surface registration and multivariate statistics computation.
With the conformal parameterization, both the superior and inferior
pieces of a CC surface are conformally mapped to a rectangle in the
parameter domain (a). The shading effect in the parameter space is
generated by rendering the surface normal directions of the original 3D
surface. We register two CC surfaces in the simpler planar parameter

domain, which also induces a registration of the 3D surfaces. The
multivariate tensor-based morphometry (mTBM) is then computed on
each surface point as a 3×1 vector. The thickness measurement is inter-
polated on each surface point. The multivariate statistics consisting of the
thickness and mTBM are 4×1 vectors on surface vertices (b)
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is the new adjusted statistic. Then Acov is computed by fitting
the following general linear model to A:

A ¼ β0 þ β1 � ageþ β2 � gender þ β3 � group

þ error ð7Þ

where βi, i=0,1,2,3 are estimated regression coefficients
at the specific vertex. For between-group difference
studies, group is coded as a binary dummy variable
(e.g., group=0 (SC) and 1 (CB) for SC vs. CB group
comparison study) and similarly for gender (i.e., gender
=0 (male) and 1 (female)) so that Acov=β3×group+
error=A−β0−β1×age−β2×gender. For the multivariate
measures, the regression is computed separately for each
channel (Leporé et al. 2008; Shi et al. 2013c) and on
each vertex, we get a new multivariate feature vector
[Acov1,Acov2,Acov3,Acov4].

We apply Hotelling’s T2 test—the multivariate equiv-
alence of the t-test—on the multivariate statistics. Given
two groups of n×4 matrices (n is the number of vertices
on each surface; and each row is the multivariate fea-
ture vector on each vertex), Si, i=1,2,…,p and Tj, j=1,
2,…q, we use the Mahalanobis distance M to measure
the group mean difference,

M ¼ NsNT

Ns þ NT
S−T

� �T
Σ−1 S−T

� �
ð8Þ

where Ns and NT are subject numbers in two groups, S
and T are the means of the two groups and Σ is the
combined covariance matrix of two groups (Leporé
et al. 2008). In order not to assume normally distributed
data, we run a permutation test where we randomly
assign subjects to groups. We compare the results (T2

values) from true labels to the distribution generated
from the randomly assigned ones. In each case, the
covariate (group membership) was permuted 5000 times
and a null distribution was developed for the areas of
the average surface with group-difference statistics
above the pre-defined threshold in the significance p
maps. The global map significance is defined as the
probability of finding, by chance alone, a statistical
map with at least as large a surface area beating the
pre-defined statistical threshold of p=0.05, under the
null hypothesis of no systematic group differences. This
omnibus p-value is commonly referred to as the overall
significance of the map (or the features in the map),
corrected for multiple comparisons (Wang et al. 2010).

Results

Volumetric Differences Between Groups

We first tested if there were statistical differences in the whole
volume of the CCs between any two of three groups (CB, LB
and SC). In this experiment, we took the volume of each CC
surface as a univariate statistic and applied Student’s t-test to
study group difference. For each pair-wise group comparison,
we performed a permutation test with 5000 random assign-
ments of subjects to groups, given 0.05 as the significant level.
Total callosal volumes were not significantly different be-
tween groups after adjusting for age and gender information
(CB vs. SC, p=0.7774; CB vs. LB, p=0.3213; LB vs. SC, p=
0.3347).

Linking Callosal Morphometry and Visual Experience

Figure 6 shows statistical maps of callosal morphometry
changes in CB vs. SC, CB vs. LB and LB vs. SC. Our method
picked up strong differences in CC morphometry for all three
group comparisons. In three sets of results, we detected sig-
nificant areas around splenium areas for the combined mea-
sure. The CB also shows significant changes in the body of the
CC. After multiple comparisons correction, the overall signif-
icances of the multivariate statistics for all three group com-
parison tests were statistically significant (CB vs. SC, p=
0.0002; CB vs. LB, p=0.0123; LB vs. SC, p=0.0106).

Comparison with Other Morphometric Statistics

To explore whether combining thickness with surface area
information from mTBM provides additional statistical pow-
er, in each experiment, we also conducted three additional
statistical tests, including: (1) the thickness (THK) itself; (2)
TBM, i.e., the determinant of the Jacobian matrix (Davatzikos
1996; Chung et al. 2008), which gives the magnitude of area
changes but not their direction changes; and (3) mTBM alone
(Leporé et al. 2008; Wang et al. 2010). For statistics (1) and
(2), we applied the Student’s t-test to compute the group mean
difference at each surface point. In case (3) and for our new
combinedmeasure, we used Hotelling’s T2 test to compute the
group mean difference. Figure 7 shows statistical maps of
callosal morphometry changes in CB vs. SC, CB vs. LB and
LB vs. SC with these three statistics. The statistical maps of
callosal morphometry changes in CB vs. SC, CB vs. LB and
LB vs. SC with these three statistics were consistent with the
new multivariate statistical maps but with fewer significant
areas. We also computed the overall significance of the maps
with all three kinds of statistics (as summarized in Table 1). In
each of our three group difference analyses, we found that the
combined thickness and area multivariate statistics always
achieved the most significant values among four statistics.
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The experimental results provide empirical evidence to sup-
port the improved statistical power when we combine thick-
ness and mTBM statistics.

Discussion

There are two main contributions in this paper, one method-
ological and the other theoretical. First, we propose new
multivariate statistics by combining the callosal thickness
computed from our new method and mTBM. We propose an
efficient tetrahedral mesh based method to compute the har-
monic field. Our approach adopts a high quality, adaptive
tetrahedral mesh (Lederman et al. 2011) and a volumetric
Laplace-Beltrami operator (Wang et al. 2004a). Compared
with prior work (Jones et al. 2000; Adamson et al. 2011),
our partial differential equation (PDE) solving computation
may achieve sub-voxel accuracy. Also because surfaces are
easily computed from tetrahedral meshes, our method can be
easily integrated with prior surface registration work (Wang
et al. 2010, 2011, 2013c). Second, we identify areas that show
differences in the structure of the CC between early blinds,
late blinds and sighted controls. Group difference analysis is
an important tool to illustrate the impacts of diseases on brain
structures. Specifically, the statistical p-maps of group com-
parisons pinpoint the location and rate of changes and

provide a visual index of how a disease affects the shape
of brain structures. With permutation test to correct for
multiple comparisons, the overall significance p-value of a
p-map is a quantitative measure indicating how likely the
patterns in the p-map occurring by accident. Group differ-
ence analysis has been applied widely in the literature to
study the impacts of Alzheimer’s disease (AD) on hippo-
campus and ventricles (Thompson et al. 2004a; Wang
et al. 2011), the genetic influence of ApoE4 on hippo-
campus (Shi et al. 2014), and the impact of prematurity
on putamen (Shi et al. 2013b), etc. With group difference
analysis, our results confirm and extend prior works by
demonstrating how blindness acquired at different periods
during development influence the structural reorganization
of the CC (e.g., Leporé et al. (2010)).

In contrast to previous structural studies investigating
changes in volume of occipital regions and showing massive
volume reduction in blind individuals (CB and LB) (Ptito
et al. 2008; Qin et al. 2013; Park et al. 2009), we show here
that the global volume of the CC remains identical in early and
late blind individuals when compared to sighted controls.
However, our results highlight that splenium regions, a struc-
ture primarily composed of fibers connecting the visual areas
of the brain are sensitive to visual deprivation. Our results are
consistent with tractographic studies (Shimony et al. 2006; Yu
et al. 2007), which found that fractional anisotropy was sig-
nificantly reduced in the splenium of CB subjects. A voxel-

Fig. 6 P-maps using the
combined mTBM-thickness
statistic for the three different
group comparisons
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based morphometric study also reported white matter decreases
in the posterior part of the corpus callosum (Ptito et al. 2008).
Importantly, we observed that these reorganizations are more
significant in individuals deprived of vision early in life com-
pared to blindness acquired late in life. Whereas it has been
suggested the existence of a critical period beyondwhich little or

no structural reorganization is possible in the blind (Noppeney
2007; Jiang et al. 2009), we demonstrate here for the first time
that visual deprivation acquired after the development of the
visual cerebral architecture still impact on the structure of
splenial regions of the CC. However, the impact of visual
deprivation on the structure of splenial regions is reduced when
blindness is acquired late in development. In the late-onset blind
subjects, the process of myelination is advanced, so that the
structure of the corpus callosum may be more resistant to the
change induced by the loss of visual perception.

Our results however contrast with two recent studies that
did not observe significant differences in splenial volume and
no difference in the gross topographic organization of visual
callosal connections in anophthalmic and early blind individ-
uals (Bock et al. 2013; Bridge et al. 2009). Our larger sample
size (14 CB were included in our study relative to 6 CB in the
Bock’s study) may allow greater detection power of volumet-
ric differences within the splenium. More importantly, we
introduce here a novel framework to capture a complete set
of shape differences in the CC, by combining manual seg-
mentation from T1-weighted brain MRI, modelisation by 3D

Fig. 7 Comparison of p-maps
with three statistics for three other
different group difference studies.
Non-blue colors show vertices
with statistical differences, at the
0.05 level, uncorrected. The
combined multivariate statistics
outperforms all three individual
statistics (the critical p-values for
these maps are shown in Table 1)

Table 1 Permutation-based overall significances of the group
difference maps levels, i.e., corrected p-values, are shown, after
analyzing various different surface-based statistics for pair-wise group
comparisons. To detect group differences on CC morphometry, it was
advantageous to combine both thickness and full tensor (represented by
mTBM) information

mTBM+Thickness mTBM Thickness TBM

CB vs SC 0.0002 0.0052 0.0051 0.0165

CB vs LB 0.0123 0.0443 0.1229 0.2052

LB vs SC 0.0106 0.0225 0.1776 0.0181

In each of the three group difference analyses, the combined thickness
and mTBM multivariate statistics always achieved the most significant
values (boldface) among four statistics
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tetrahedral meshes and multivariate statistics in order to com-
pare the combination of area and thickness at each point
between subject groups. The enhanced sensitivity of this
technique is evidenced by the fact that in a previous study,
we did not observe any volumetric difference in the CC
between LB versus CB or SC groups (Leporé et al. 2010),
whereas such differences are compellingly demonstrated here.
These results therefore suggest that the newly proposed mul-
tivariate morphometry has more detection power in terms of
effect size, likely because it captures callosal thickness and
more directional and rotational information when measuring
geometric differences. Statistically, the improved effect size
with the new morphometry is more likely caused by real
anatomical differences, instead of bias in the mathematical
model or the processing pipeline. When examining the signif-
icance of the group differences, we use a non-parametric
permutation method in which the subjects are repeatedly
assigned into random groups and p-values for group differ-
ences are computed (“Statistical Maps and Analysis on Group
Difference” section). Thus, any bias in the mathematical mod-
el should also be found in the permutation distribution that is
used to verify the significance of the statistical maps. If there
exists bias in the processing pipeline that tends to cause the
observations to deviate from their true values in some cases
but not in others, then the confound should also present in the
situations in which subjects are randomly assigned to groups,
and this confound should enter into the permutation distribu-
tion, too, protecting against an inflation of Type I error (false
positives). It is worth noting here that our observation of
between-groups volumetric differences in the splenium part
of the CC does not exclude that the retinotopic organization
within the splenium itself is not maintained (Bock et al. 2013).
Therefore, despite the fact that the large-scale topography of
visual callosal tracks may remain intact in blind individuals
(Bock et al. 2013), our results suggest that visual deprivation
early and even late in life can affect the integrity of these tracks
by putatively reducing the myelinisation of these fibers or
their axon diameter in the absence of visual input. In addition
to provide new insights into the myelinisation and cortical
plasticity processes of the CC ensuing visual deprivation, our
experiment also opens new avenues for exploring structural
differences in various brain regions following visual
deprivation.

Our results are also consistent with prior discoveries from
animal model studies, e.g., in rats (Olavarria et al. 1987; Chan
et al. 2012; Bock and Olavarria 2011), hamsters (Fish et al.
1991), cats (Olavarria and Van Sluyters 1995) and ferrets
(Bock et al. 2010, 2012). These studies all demonstrated the
significant effects of early enucleation upon brain visual sys-
tems. Particularly, it was shown that the pattern of callosal
connections was highly anomalous in early enucleated ferrets
but that later enucleation had less significant effect on the
callosal pattern.

The Corpus callosum is the largest inter-hemispheric com-
missure in human brain, consisting of over 200 million fibers.
Due to the strong contrast with surrounding tissues inMRI scans,
it is convenient to apply surface-based algorithms to analyze CC
morphometry. However, existing methods on CC study usually
delineate themidsagittal section of theCC structure and represent
the superior and inferior boundaries as 3D curves. Thickness
computed on the curves was used as a measure of local area
differences on CC (Thompson et al. 2006; Luders et al. 2010;
Joshi et al. 2013). Only a few studies directly worked on CC
surfaces (He et al. 2009; Wang et al. 2012b) and used surface
areas as potential CC morphometry biomarkers for autism (He
et al. 2009) and prematurity (Wang et al. 2012b) research. Our
current method may provide a novel way to measure and com-
bine CC thickness and local surface area differences to increase
statistical power on CC morphometry study, particularly on
blindness research. On the other hand, although the ground truth
is not known in defining real biological differences in CC shape
between different groups, consistent findings on different
datasets with different algorithms may indicate a fair measure-
ment of the efficacy of a novel method. The volume-based study
(Leporé et al. 2010) found significant differences in isthmus and
splenium of the CB group, which is consistent with our result.
Although no significant difference was detected in the LB group,
the statistical p-map still showed a consistent pattern with our
result. A more recent CC study (Tomaiuolo et al. 2014) on a
larger dataset (28 CB and 28 SC) also revealed significant
regional differences in the splenium, isthmus and the posterior
part of the CC body. Thus, our mothed may be effective in
detecting real differences between different diagnostic groups.

In T1-weighted MRI, its high contrast difference from sur-
rounding structures make accurate mid-sagittal callosal segmen-
tations straightforward for both manual and automatic methods
(Thompson et al. 2003; Styner et al. 2005b; Luders et al. 2006,
2010; Herron et al. 2012). Additionally, its functional differen-
tiation along an elongated sagittal axis has allowed researchers
to focus on 2D analyses of the mid-sagittal section. The struc-
turalMRI based CC structure has been used to study a variety of
human development and diseases including Autism (Vidal et al.
2006; Tepest et al. 2010), Schizophrenia (Joshi et al. 2013;
Adamson et al. 2011), Huntington’s disease (Di Paola et al.
2012) and others. Starting from our prior work on volumetric
Laplace-Beltrami operator and mTBM (Wang et al. 2004a,
2010), here we show that we may integrate two different sets
of shape features efficiently for 3D CC structural analysis. Our
empirical results on blindness study demonstrated that the com-
bined multivariate statistics improved the statistical power of
CC analysis and outperformed some other statistics. Our anal-
ysis pipeline is generic and may be applied to analyze CC
structures for other neuroinformatics research. We hope our
work can provide some practical experience and inspire more
interest in combining thickness and surface mTBM features in
future CC morphometric study.
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Conclusion

We compared the structure of the CC in three groups of
subjects with different visual experiences, a congenitally and
late blind group and a sighted group. We found significant
differences between any two of these three groups, particular-
ly in the splenium part of the CC. These changes were detect-
ed using a new MRI-based computer-assisted callosal mor-
phometry system that uses volumetric thickness and surface
conformal maps to induce well-organized grids on surfaces.
The thickness estimation adopts the tetrahedral mesh based
Laplace-Beltrami operator and thus achieves sub-voxel accu-
racy. The multiple comparisons results demonstrate that our
framework may have stronger statistical power than those of
thickness or other surface morphometry statistics.

Because of the well-known relationship existing between
brain structure and brain function (Zatorre et al. 2012),
assessing structural changes in blind individuals may provide
important insights onto the functional outcome of sight-
restoration (Collignon et al. 2011a), which is timely due to
the recent advances in ophthalmologic procedures, stem cell
transplantation, genetic therapies, as well as retinal prosthetic
devices, which offer now more than ever the hope of restoring
sight (Merabet et al. 2005). Such studies may eventually serve
to predict outcome in blind individuals who are candidates for
sight restoration and pave the way for a new generation of
individually-adapted rehabilitation procedures based on the
individual neuro-structural profile observed before and after
sight restoration (Heimler et al. 2014).

In the future, we will combine and correlate our multivar-
iate statistical framework with other MRI imaging techniques,
such as cortical morphometry and diffusion tensor imaging
(DTI) tractography, to advance our understanding of how
visual deprivation affects the structure of the “visual” brain.
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