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1.  INTRODUCTION

Magnitude dimensions such as numerosity, time, and 

space represent fundamental properties of the external 

world, as each of these dimensions provides essential 

information to understand and navigate the environment. 

Indeed, the perception of magnitudes organizes our 

thoughts and experience by allowing us to appreciate 

how many objects are around us, their size and their spa-
tial relations, and the duration and timing of the external 
events. While these dimensions are important in their 
own rights and studied in separate lines of research, a 
particularly interesting phenomenon is their integration 
and interaction, possibly grounded on their shared com-
putational structure (e.g., Walsh, 2003). Different magni-
tude dimensions seem, indeed, linked in a way that the 
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perception of one dimension depends on the others, usu-
ally leading to mutual biases. For instance, a large object 
or a numerous set of items is perceived as lasting longer 
in time compared to a smaller object or fewer items (e.g., 
Xuan et  al., 2007). Vice versa, a longer stimulus may 
appear bigger or more numerous than a shorter one (e.g., 
Javadi & Aichelburg, 2012; Lambrechts et  al., 2013; 
Togoli et al., 2021, 2024).

These mutual influences across magnitude dimen-
sions—or “magnitude integration” effects—represent 
one of the core phenomena characterizing magnitude 
perception, and have inspired important theories like the 
“a theory of magnitude” (ATOM) framework (Walsh, 2003). 
According to ATOM, the processing of different magni-
tudes culminates in a generalized magnitude system 
encoding different dimensions with the same neural 
code. This, in turn, would allow the interaction of magni-
tude information in the service of perception and behav-
ior. This view has been, however, challenged by the idea 
that biases across magnitudes, and especially space and 
time, may stem from the linguistic labels assigned to 
them, and how we conceptualize these dimensions at the 
linguistic rather than perceptual level (“metaphoric the-
ory”; e.g., Casasanto & Boroditsky, 2008). While evidence 
has now been accumulated against a purely linguistic/
conceptual view of magnitude integration (Cai & Connell, 
2015; Togoli, Bueti, et  al., 2022; Whitaker et  al., 2022), 
other theories have proposed alternative cognitive mech-
anisms mediating magnitude interactions, based on 
working memory interference (Cai et  al., 2018), or 
response biases (Yates et al., 2012). Namely, according 
to these ideas, the interference across magnitudes would 
occur either because of different memory traces nudging 
each other while stored in working memory, or because 
of a bias in the response selection due to the similar 
response codes of different magnitudes (i.e., “more” vs. 
“less”). In both these cases, the interference would not 
affect how magnitudes are perceived, but only their 
memory traces or the way they are judged. Finally, based 
on neuroimaging data, it has been recently proposed 
(Hendrikx et al., 2024; Tsouli et al., 2022) that the interac-
tion could arise from the processing of different dimen-
sions in partially overlapping cortical maps, especially in 
the parietal cortex (e.g., Bueti & Walsh, 2009; Riemer 
et al., 2016, 2022) but without involving a common neural 
code (Fortunato et al., 2023; Harvey et al., 2013, 2015; 
Hendrikx et al., 2022, 2024; Protopapa et al., 2019).

At which processing stage magnitude integration 
arises, thus, remains debated. Mixed evidence, indeed, 
seems to support both the “low-level,” perceptual inter-
pretation, and the “high-level” interpretation based on 
memory and/or decision making. For example, results 
from Cai et al. (2018) show that duration judgments can 

be biased by the length of a stimulus only when the length 
information is provided before the duration judgment has 
started, suggesting that the bias occurs as an interfer-
ence between memory traces. Furthermore, electroen-
cephalographic (EEG) evidence from Cui et  al. (2022) 
shows that the interference of length on duration is 
reflected by event-related potentials (ERPs) usually asso-
ciated with working memory (i.e., the P2 and P3b compo-
nent). Conversely, other results show that the integration 
effect does not occur every time two magnitudes are pre-
sented, as one would expect, for instance, from a 
response bias, but only when the two dimensions are 
conveyed by the same stimulus (e.g., a dot array with a 
given numerosity flashed to mark the onset and offset of 
a duration; Togoli, Bueti, et al., 2022). Instead, when two 
dimensions like duration and numerosity are conveyed 
by different stimuli (i.e., a texture marking the onset and 
offset of a duration, flashed on top of a dot array), the 
effect reverses becoming repulsive (i.e., the more numer-
ous the stimulus is, the shorter it is perceived to last). This 
suggests that magnitude integration effects are not the 
result of a simple interference between different types of 
information, but involve perceptual binding processes.

To further assess the nature of the magnitude integra-
tion phenomenon, here we compare the neural (EEG) sig-
nature of magnitude integration when magnitudes are 
actively judged in a task, versus when they are passively 
watched while attending a different feature of the stimuli 
(i.e., contrast). In the first experiment, the participants 
judged either the numerosity, the duration, or the item size 
of dot-array stimuli against a reference presented before 
the start of each block (magnitude task condition). In a 
second experiment, a separate group of participants 
watched a similar stream of dot-array stimuli modulated 
in numerosity, duration, and item size, but were asked to 
attend and respond to the contrast of the stimuli (i.e., con-
trast oddball detection task; contrast task condition). Our 
hypothesis is that if magnitude processing and integration 
entail perceptual processes, then similar magnitude-
sensitive neural signatures should be observed irrespec-
tive of whether the participants are actively judging 
magnitudes or not. Specifically, what we define as per-
ception in this context includes the stream of processing 
that starts with early sensory encoding and culminates 
with a perceptual representation of a stimulus, before 
such a representation enters later post-perceptual stages 
involving for instance working-memory manipulation (e.g., 
comparison between a target stimulus and a memorized 
reference), decision, and response selection. According 
to this, a perceptual effect should involve a bias in the 
subjective appearance of a stimulus, and not just in its 
mnemonic trace when retrieved to perform a task, and 
should thus emerge irrespective of whether magnitude 
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information is subject to working memory and decisional 
processes or not. Conversely, if the integration effect 
hinges upon active manipulation in memory or decision-
making, then brain activity during the magnitude task 
should show a unique neural signature not generalizing to 
the contrast task condition, where the magnitudes are 
neither memorized nor judged. In other words, a mne-
monic or decisional interference should show a signature 
specific to the condition where magnitudes are actively 
judged. To test this hypothesis, we first identify a neural 
signature of magnitude integration in the magnitude task 
condition, by assessing the extent to which the brain 
responses could predict the integration effect measured 
behaviorally. We then compare such a neural signature 
with brain activity evoked by the different magnitudes in 
the contrast task condition. Finally, to achieve a quantita-
tive measure of how similar the brain responses in the two 
conditions are, we use a multivariate cross-condition 
“decoding” analysis. With this analysis, we thus assess 
the extent to which magnitude-sensitive brain responses 
during the contrast task can be predicted from the data of 
the magnitude task condition. If magnitude processing 
and integration entail similar mechanisms engaged irre-
spective of the task, then the brain responses to the mag-
nitudes in the contrast task condition should be decodable 
based on the magnitude task data. Otherwise, if the task 
engages specific mechanisms resulting in different pat-
terns of brain activity, no cross-condition decoding should 
be observed.

2.  MATERIALS AND METHODS

2.1.  Participants

A total of 51 participants were tested in the study, with 20 
participants tested in the magnitude task condition (13 
females; age ± SD = 24.95 ± 4.21) and 31 separate par-
ticipants tested in the contrast task condition (19 females; 
age ± SD = 23.96 ± 3.73). Two participants were excluded 
from data analysis in the contrast task condition due to 
corrupted EEG data files, leaving 29 participants included 
in the final analysis. Subjects were compensated for their 
participation in the study with 20 Euros. All participants 
read and signed a written informed consent form before 
the start of the session. All participants had normal or 
corrected-to-normal vision, and reported no history of 
neurological, psychiatric, or developmental disorders. 
The study was approved by the ethics committee of the 
International School for Advanced Studies (Protocol 
10035-III/13), and was designed to be in line with the 
Declaration of Helsinki. The sample size tested in the 
magnitude task condition was determined a priori based 
on the expected magnitude integration effect as observed 

in previous studies from our group (Togoli, Bueti, et al., 
2022; Togoli, Fornaciai, et al., 2022; Togoli et al., 2021). 
From these studies, we estimated an expected effect size 
(Cohen’s d) of 0.9. Note that this measure of effect size 
more liberally reflects an average estimate of the effect, 
rather than the minimum effect size observed in previous 
studies. We, however, also considered a more conserva-
tive level of power (90%), in line with previous studies 
from our group using similar experimental protocols (e.g., 
Fornaciai et al., 2023). Thus, considering a power of 90% 
and a two-tailed distribution, the power analysis indi-
cated a total estimated sample size of 16 participants, 
which we conservatively rounded up to 20. The sample 
size of the contrast task condition was instead chosen 
assuming a lower expected effect size (d  =  0.55; see 
Fornaciai et al., 2023), reflecting the neural responses to 
magnitude as captured by a multivariate decoding analy-
sis. Based on a one-tailed distribution and a power of 
90%, a power analysis estimated a sample size of 30 
participants. Note that the choice of using different distri-
butions (two-tailed or one-tailed) in the power analyses of 
the two experimental conditions reflects the different 
underlying assumptions concerning the direction of the 
effect. Namely, in the magnitude task condition we con-
sidered possible behavioral effects in both the positive 
and negative direction (i.e., see DeWind et al., 2015 and 
Fornaciai et al., 2019 for negative effects between size 
and numerosity). In the contrast task condition, instead, 
the power analysis was based on the predicted results of 
a multivariate analysis of EEG data, for which we assumed 
results in only one direction (i.e., classification accuracy 
higher than chance level).

2.2.  Apparatus and stimuli

The stimuli used in both conditions were arrays of black 
and white dots (50%/50% proportion), presented on a 
grey background at 90% of the maximum contrast. The 
white dots had a luminance of 88.4 cd/m2, the black dots 
0.4 cd/m2, and the grey background had a luminance of 
46.7  cd/m2. The stimuli were generated using the rou-
tines of the Psychophysics Toolbox (v.3; Kleiner et  al., 
2007; Pelli, 1997) in Matlab (r2021b, The Mathworks, 
Inc.), and presented on a 1,920 × 1,080 LCD monitor run-
ning at 120  Hz, which encompassed a visual angle of 
48 × 30 deg from a viewing distance of 57 cm. The dot-
array stimuli were generated online in each trial, with the 
dots scattered pseudo-randomly within a circular aper-
ture with a variable radius spanning from 200 to 400 pix-
els (4.76 to 9.52 degrees of visual angle; pseudo-randomly 
determined in each trial). In the magnitude task condition, 
the dot-array stimuli could have a numerosity of 8, 12, 16, 
24, or 32 dots, a duration of 100, 140, 200, 280, or 
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400 ms, and item size (i.e., the radius of each item in the 
array) of 3, 4, 6, 8, or 10 pixels (0.07, 0.09, 0.14, 0.19, and 
0.24 degrees of visual angle, respectively), for a total of 
125 unique combinations of the three magnitudes. The 
different ranges were designed to be approximately 
spaced in a Log2 scale. The reference stimulus that the 
participants used as a comparison (presented at the 
beginning of the session and before each block) had the 
middle value of the three ranges (16 dots, 200 ms, 6 pix-
els). The stimuli in the contrast task condition had smaller 
magnitude ranges to make the modulation of magnitudes 
subtler and less obvious, in order to better mask the true 
aim of the experiment. Namely, the stimuli could have a 
numerosity of 12, 16, or 24 dots, a duration of 140, 200, 
or 280 ms, and an item size of 4, 6, or 8 pixels (0.09, 0.14, 
0.19 degrees of visual angle, respectively). Again, these 
ranges were designed to be approximately spaced in a 
Log2 scale. In both conditions, the stimuli were presented 
at the center of the screen.

2.3.  Procedure

2.3.1.  Magnitude task condition

In the magnitude task condition (Fig.  1A), participants 
performed a magnitude classification task, with the 
dimension judged in each trial determined by a retro-
spective cue (i.e., presented after the offset of the stimu-
lus). First, participants watched a reference stimulus 
representing the middle of the magnitude ranges used in 
the experiment and were instructed to remember it and 
judge the stimuli in the main sequence based on it. The 
reference was presented 10 times (randomizing the posi-
tions of the dots) before the start of the session and 
repeated 5 more time before the start of each block of 
trials. In the session, participants were instructed to keep 
their gaze on a central fixation point. Each trial started 
with the presentation of the fixation cross (an “X” at the 
center of the screen). After 750 ms, the dot-array stimu-
lus was presented replacing the fixation cross, and was 
displayed for 100–400  ms according to the duration 
selected in the trial. After an interval of 600 ms from the 
offset of the stimulus, the retrospective cue was pre-
sented at the center of the screen. The cue could be 
either “N,” “T,” or “S,” respectively instructing the partic-
ipant to judge the numerosity, duration (i.e., time), or item 
size of the stimulus. The cue remained on the screen for 
600 ms. After that, the cue was replaced by a red X (fixa-
tion cross), instructing the participant to provide a 
response. According to the cue, the participant was 
asked to indicate whether the stimulus had a higher or 
lower numerosity, a longer or shorter duration, or a bigger 
or smaller item size compared to the reference. The 

response was provided by pressing either the down 
arrow (lower/shorter/smaller) or the up arrow (higher/lon-
ger/bigger) on a standard computer keyboard. After pro-
viding a response, the next trial started after a variable 
inter-trial interval of 500 ± 50 ms. Each participant com-
pleted a total of 1,250 trials (10 blocks of 125 trials), cor-
responding to a total of 10 repetitions of each unique 
combination of numerosity, duration, and dot size (i.e., 5 
numerosities × 5 durations × 5 sizes × 10 repetitions). The 
three tasks were randomly intermixed within the same 
blocks. No feedback was provided to participants about 
their response.

2.3.2.  Contrast task condition

In the contrast task condition (Fig.  1B), the participants 
watched a series of stimuli modulated in numerosity, dura-
tion, and size. Each stimulus was presented centrally on 
the screen, and successive stimuli were separated by an 
inter-stimulus interval of 980 ± 50 ms. In order to make par-
ticipants attend the stream of stimuli, they were asked to 
detect occasional oddball stimuli defined by a reduced 
contrast compared to the rest of the stimuli (30% contrast 
instead of 90%; contrast oddball detection task). The odd-
ball stimuli represented 3.7% of the total stimuli presented. 
Participants were thus instructed to press the space bar on 
the keyboard as fast as they could once they detected an 
oddball stimulus. This occasional simple detection task 
was designed to avoid drawing attention to any of the mag-
nitude dimensions of the stimuli, while encouraging the 
participants to watch the stimuli. On average, the detection 
rates (±SD) of the oddball were 93% ± 1.3%, and the aver-
age reaction time was 313 ± 11 ms. In the contrast task 
condition, participants completed a total of 2,160 trials (8 
blocks of 270 trials), for a total of 80 repetitions of each 
combination of stimulus magnitudes (i.e., 3 numerosities × 
3 durations × 3 sizes × 80 repetitions). The higher number 
of trials tested in the contrast task condition compared to 
the magnitude task condition was chosen to compensate 
for the smaller magnitude ranges used, that is, in order to 
ensure that we could measure robust brain responses to 
the magnitudes also in this condition. Overall, participants 
were only instructed to watch the stream of stimuli and 
respond to the oddball, and the magnitudes were never 
mentioned in the instructions and recruiting materials.

Note that the stimuli and procedures of the two exper-
imental conditions were partially different. When design-
ing the experiments, indeed, we deemed it more important 
to have paradigms specifically tailored to each condition 
rather than using the exact same procedure, in order to 
increase the sensitivity of each experiment. Specifically, 
while a more extended magnitude range is necessary in 
the magnitude task condition in order to assess the 
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behavioral effect of magnitude integration (see Section 2.4 
below), such extended range is not necessary for the 
contrast task condition. In this latter condition, we thus 
preferred to have fewer levels of magnitude and increase 
the number of repetitions of each level to increase the 
signal-to-noise ratio of the EEG analysis, and smaller dif-
ferences across different levels to provide a subtler mod-
ulation of the different dimensions. When it comes to the 
timing of stimulus presentation, the magnitude task con-
dition requires the addition of blank intervals between the 
offset of the stimulus and the onset of the task cue and 

the response, to avoid introducing noise to the brain 
responses to the stimulus itself. Since those intervals are 
not needed in the contrast task condition, we chose a 
faster presentation rate to avoid having long blank peri-
ods, and to increase the number of trials that we could 
test during the experimental session. According to the 
hypothesis tested in this study (see Section 1), such dif-
ferences in the stimuli and the procedure should not 
affect the assessment of magnitude processing and inte-
gration and the comparison of brain responses to the 
magnitudes across the two experimental conditions.

Fig. 1.  Experimental procedure. (A) Procedure of the magnitude task condition. While participants kept their gaze at 
the center of the screen (on a “X” that served as fixation cross), a stimulus was presented in each trial. The stimulus was 
modulated in numerosity (8–32 dots), duration (100–400 ms), and item size (i.e., the size of each item in the array;  
3–10 pixels). After an interval of 600 ms from the offset of the stimulus, a cue appeared at the center of the screen 
indicating which stimulus dimension the participant had to judge. Namely, the cue could be an “N” (numerosity judgment), 
a “T” (i.e., “time”; duration judgment), or an “S” (size judgment). The cue remained on the screen for 600 ms, after which 
a red fixation cross appeared on the screen, indicating to provide a response. The participants were then asked to report 
whether the magnitude dimension indicated by the cue was bigger or smaller compared to a reference corresponding 
to the middle of the magnitude ranges (presented before the session and before each block of trials). After providing a 
response, the next trial started after a variable inter-trial interval (500 ± 50 ms). (B) Contrast task condition. In the contrast 
task condition, participants watched a stream of dot-array stimuli modulated in numerosity (12–24 dots), duration (140–
280 ms), and item size (4–8 pixels), while keeping their gaze on a central fixation cross. To ensure that participants 
watched the stimuli, they were asked to detect an occasional oddball stimulus (i.e., a dot array with reduced contrast) 
presented on 3.7% of the trials. Each stimulus was separated by a variable inter-stimulus interval of 980 ± 50 ms. Stimuli 
are not depicted in scale.
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2.4.  Behavioral data analysis

In the magnitude task condition, the magnitude judgment 
performance and the integration effect were assessed by 
first computing the point of subjective equality (PSE). The 
PSE reflects the accuracy in the task, and the perceived 
magnitude of the stimuli compared to the reference mag-
nitude. Data reflecting each specific task (i.e., all the trials 
in which a specific cue was presented) were used to 
compute the proportion of “more” (numerosity task), 
“longer” (duration task), or “bigger” (size task) responses 
as a function of both the task-relevant magnitude and the 
other (interfering) magnitudes. A psychometric (cumula-
tive Gaussian) function was then fitted to the distribution 
of proportion of response, according to the maximum 
likelihood method (Watson, 1979). Specifically, within 
each task, the psychometric function was fitted sepa-
rately for each level of each of the other “interfering” 
magnitudes, in order to assess the difference in PSE due 
to the task-irrelevant magnitudes. For example, when 
analyzing the performance in the numerosity task, the fit 
was performed separately for each level of duration and 
each level of item size. To account for errors unrelated to 
the magnitude of the stimuli and lapses of attention, a 
finger-error rate correction of 2.5% (Wichmann & Hill, 
2001) was applied. This correction reduces the asymp-
totic levels of the fit by a proportion corresponding to the 
rate, in order to account for the random errors preventing 
the proportion of responses from converging to 0% and 
100% at the lower and higher end of the range, respec-
tively. The PSE was computed as the numerosity/dura-
tion/size level corresponding to chance level (50%) 
responses (i.e., the median of the psychometric curve). 
This procedure allowed us to compute individual mea-
sures of PSE for the different combinations of task-
relevant and interfering dimensions (e.g., numerosity PSE 
when duration was 100, 140, 200, 280, and 400 ms, and 
the same for size, and similarly for the other tasks). When 
performing the fit according to a given task-relevant and 
interfering magnitude, the other dimension was col-
lapsed. Doing so, each data point in the fitting procedure 
represented the average of 25 repetitions of the specific 
combination of task-relevant and interfering dimension. 
Additionally, we assessed the precision in the task in 
terms of the Weber fraction (WF). The WF was computed 
as the ratio between the just noticeable difference (JND; 
the slope of the psychometric curve) and the PSE. To 
assess the difference in the average WF across the three 
types of tasks, we used a one-way repeated-measures 
ANOVA.

In order to better define the effect of the interfering 
magnitudes in each task, we then used the PSE to com-
pute a “magnitude integration effect” index according to 
the following formula:

	

Magnitude Integration Effect

= −1 x  PSEj−PSEref( ) / PSEref( )  x 100; 	

Where PSEref correspond to the PSE obtained when 
the interfering magnitude considered was the same as 
the reference, and PSEj to the PSE corresponding to 
each other level of the interfering magnitude (either lower 
or higher than the reference). The change in sign (-1) was 
added in order to make the interpretation of the index 
easier. Namely, doing so a positive index means that the 
task-relevant magnitude is overestimated, while a nega-
tive index means that the magnitude is underestimated. 
To assess the significance of magnitude integration 
effects, we performed a series of linear mixed-effect 
model tests, assessing the integration biases on each 
type of judgment. Namely, we entered the magnitude 
integration effect as dependent variable, the ratio of each 
level of the interfering magnitude with the reference value 
and the magnitude itself (i.e., “numerosity,” “duration,” or 
“size”) as predictors. The subject, as well as the ratio and 
magnitude type, were also added as random effects 
(Magnitude integration effect ~ Ratio + Magnitude + Ratio 
x Magnitude + (1|subj.) + (1|Ratio) + (1|Magnitude) + 
(Ratio x Magnitude|subj.)). Interactions found between 
ratio and magnitude were followed up with additional 
LME tests within each interfering magnitude dimension. 
The LME models were chosen in this case (i.e., instead of 
ANOVAs) as the ratio is a continuous variable.

Finally, in order to assess the relationship between 
ERPs and the behavioral effect, we computed a measure 
of ΔPSE. This measure reflected the difference in PSE 
between each level of the interfering dimension and the 
middle magnitude level corresponding to the reference. 
This was done to have a similar measure that can be 
related to the neural effect of different magnitudes (see 
below for more information about the ERP analysis). All 
the analyses and statistical tests on behavioral data were 
performed in Matlab (version r2021b).

2.5.  Electrophysiological recording  
and pre-processing

In both the magnitude and contrast task condition, the 
EEG was recorded throughout the experimental session. 
EEG recording was performed by using the Biosemi 
ActiveTwo system (at 2,048  Hz sampling rate), and a 
32-channel cap based on the 10–20 system layout. To 
better monitor artifacts due to eye blinks and movements, 
we recorded the electro-oculogram (EOG) by means of a 
channel attached below the left eye of the subject. Since 
the BioSemi system employs active electrodes, the out-
put signal had an impedance < 1Ω. Due to the negligible 
impedance of the active electrode system, the signal 
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quality before and during recording was assessed by 
using the “electrode offset” measure, that is, the differ-
ence in signal amplitude between each electrode and the 
control electrode (CMS). During the recording, we made 
sure to keep the electrode offset values as low as possi-
ble. Usually, electrode offset values were kept in the 
range of ±20 µV, in line with the manufacturer (BioSemi) 
recommendations, but occasionally values up to ±30 µV 
were tolerated due to the limited time available to com-
plete the procedure.

The pre-processing of EEG data was performed offline 
in Matlab (version R2021b), using the functions of the 
EEGLAB (Delorme & Makeig, 2004) and ERPlab 
(Lopez-Calderon & Luck, 2014) toolboxes. In both condi-
tions, the pre-processing involved the binning and epoch-
ing of data according to each unique combination of the 
different magnitudes. In the magnitude task condition, the 
binning was also performed separately for the three cues 
determining the specific task in each trial. Initially, the pre-
processing of the magnitude task condition involved 
epochs spanning from -300 to 1,200 ms around the onset 
of the stimuli, while the epochs used for the contrast task 
condition spanned a smaller range, from -200 to 700 ms, 
due to the different timing of the stimuli. During data anal-
ysis, however, we restricted the epochs of the magnitude 
task condition to -200:700 ms, as in contrast task condi-
tion. In the case of duration, ERPs were later re-aligned to 
the offset of the stimuli. This was done as we expected an 
effect of duration only after the presentation of the stimuli 
had fully unfolded. The pre-stimulus interval (-300:0 ms in 
the magnitude task condition, -200:0 in the contrast task 
condition) was used for baseline correction, subtracting 
the average pre-stimulus activity from the activity at each 
time point included in the epoch.

In both conditions, after the epoching, the EEG data 
were band-pass filtered with cut-offs at 0.1 and 40 Hz. 
Moreover, to clean up the data as much as possible from 
artifacts such as eye movements and blinks, we per-
formed an independent component analysis (ICA) aimed 
at removing identifiable artifacts and other potential 
sources of systematic noise. After the ICA, we addition-
ally applied a step-like artifact rejection procedure (pro-
vided by the EEGLAB toolbox; Delorme & Makeig, 2004), 
in order to exclude trials showing large differences in 
amplitude likely related to artifactual activity. This artifact 
rejection procedure involved an amplitude threshold of 
40 μV, a window of 400 ms, and a step size of 20 ms, 
based on previous works from our group (e.g., Fornaciai 
& Park, 2020; Fornaciai et  al., 2017). This was done to 
further remove any remaining large artifact from the EEG 
data after the ICA correction. On average, this led to the 
exclusion of 2.26% ± 1.73% of the trials in the magnitude 
task condition, and 0.6% ± 1.2% in the contrast task con-

dition. Finally, we computed the event-related potentials 
(ERPs) by averaging EEG epochs within each bin, and 
further low-pass filtered the signal with a 30-Hz cut-off.

2.6.  Event-related potentials analysis

In both conditions, the ERP analysis was performed by 
considering the average of the same set of three occipital 
target channels, selected a priori based on previous 
studies (Fornaciai et  al., 2017, 2023; Tonoyan et  al., 
2022). The chosen target channels were Oz, O1, and O2. 
These channels, indeed, showed consistent magnitude-
sensitive activity (at least for numerosity and duration) 
across several previous studies (e.g., Fornaciai & Park, 
2018; Fornaciai et  al., 2017, 2023; Park et  al., 2016; 
Tonoyan et al., 2022), making them an ideal primary tar-
get for capturing the perceptual processing of the differ-
ent magnitudes tested here.

First, we plotted the ERPs corresponding to each mag-
nitude and computed the linear contrast of ERPs. The lin-
ear contrast represents the difference in amplitude of brain 
responses across the different levels of a given magnitude 
(e.g., see Park et al., 2016), and it is computed by multiply-
ing the amplitude at each magnitude level by a specific 
weight. The weights of the linear contrast computation for 
each of the magnitude levels were [-2 -1 0 1 2] in the mag-
nitude task condition, and [-1 0 1] in the contrast task con-
dition, based on the number of levels of each magnitude 
tested in the two conditions. Moreover, we computed an 
additional measure of contrast by computing the differ-
ence in ERP amplitude for each level of each magnitude 
and the two extreme levels of the other two interfering 
dimensions. For example, for each level of numerosity we 
computed the difference in amplitude between the extreme 
levels of duration and size, and so on for the other dimen-
sions. We then averaged this measure across the different 
levels of each magnitude. To assess the significance of the 
magnitude contrasts, we performed a series of one-
sample t-tests against zero. To control for multiple com-
parisons, we applied a false discovery rate correction with 
q = 0.05. Finally, we computed a measure of ΔERP as the 
difference in amplitude between the ERPs corresponding 
to the middle level of the range (corresponding to the ref-
erence in the magnitude task condition) and each other 
level of the magnitude ranges. In the magnitude task con-
dition, the ΔERP was computed separately according to 
the task. Doing so, we thus computed a measure of the 
effect of numerosity in the size and duration task, and so 
on for the other magnitudes. This measure was computed 
to have an index of the effect of magnitudes on ERPs sim-
ilar to the ΔPSE computed from the behavioral results, in 
order to more easily relate the ERP and behavioral mea-
sures of the effect in the analysis of the magnitude task 
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condition. To assess the significance of the ΔERP, in the 
magnitude task we performed a series of LME tests, enter-
ing ΔERP as the dependent variable, the ratio of each 
magnitude level and the middle level as predictor, and the 
subjects as well as the ratio as random effects (ΔERP ~ 
Ratio +  (1|subj) +  (1|Ratio) +  (Ratio|subj)). In the contrast 
task condition, we instead performed a series of paired 
t-tests (i.e., due to the smaller number of levels of each 
magnitude range). In both cases, the tests were performed 
on small 10-ms windows (step = 5 ms) in a sliding-window 
fashion, and the significance was corrected with FDR 
(q  =  0.05). Additionally, we considered significant only 
clusters of consecutive significant time-points larger than 
10 ms (i.e., three consecutive significant tests or more).

Only in the magnitude task condition, we further 
assessed the relationship between ΔERP (i.e., neural 
effect of magnitude) and ΔPSE (i.e., behavioral effect of 
magnitude) via a series of LME tests. In this case, we 
entered the ΔPSE as the dependent variable, and the 
ΔERP as the predictor. The subjects as well as the ΔERP 
itself were also added as random effects (ΔPSE ~ 
ΔERP + (1|subj) + (1|ΔERP) + (ΔERP|subj)). This analysis 
was performed again across a series of 10-ms windows 
with step = 5 ms. Finally, the analysis was restricted to 
the latency windows showing a significant modulation of 
ΔERP by the magnitudes (see above), and we considered 
statistically significant only clusters of at least three con-
secutive significant windows. This analysis was aimed at 
assessing the extent to which magnitude-sensitive brain 
responses can predict the effect measured behaviorally.

2.7.  Multivariate analysis

We relied on a multivariate approach in order to more 
directly compare the brain activity related to magnitude 
processing across the two conditions. Namely, we 
assessed the extent to which training a classifier on the 
data (ΔERP) from the magnitude task condition allows to 
decode magnitude-sensitive activity in the contrast task 
condition. A schematic depiction of the different steps of 
the analysis is shown in Figure  2. The procedure was 
designed to simulate a leave-two-out, cross-validated 
decoding procedure, but with the training and test set 
composed of data from different experimental conditions 
(and hence different groups of participants). The analysis 
was performed throughout the epoch, across a series of 
small time windows (15 ms, with a step of 5 ms) in order 
to increase the signal-to-noise ratio. Moreover, the fea-
tures (i.e., EEG channels) included in the analysis were 
selected a priori, considering a larger set of channels 
compared to the ERP analysis. Namely, we chose the 
three channels previously used in the ERP analysis (O1, 
Oz, O2), with the addition of two nearby channels (PO3, 

PO4), for a total of five occipital and occipito-parietal 
channels. This choice is based on previous studies show-
ing magnitude sensitive activity from both occipital and 
occipito-parietal channels (e.g., Fornaciai et  al., 2017; 
Park et al., 2016; Tonoyan et al., 2022). Additionally, the 
choice of including five channels was based on our expe-
rience with multivariate analyses in previous studies from 
our group, in which this number of channels represented 
a good trade-off between the amount of features entered 
into the analysis and the ability of the classifier to gener-
alize the pattern of brain activity across independent 
datasets (i.e., avoiding over-fitting; e.g., Fornaciai et al., 
2023). The procedure was performed independently 
within each time window (Fig. 2A) and for each magni-
tude (numerosity, duration, size).

Within each time window (Fig. 2A), the first step was to 
create the training dataset, based on the data of the mag-
nitude task condition. First, considering the data of a sin-
gle participant, we sorted the trials according to the 
magnitude presented, and computed the difference 
between the amplitude relative to lower (8, 12 dots; 100, 
140 ms; 3, 4 pixel) and higher (24, 32 dots; 280, 400 ms; 
8, 10 pixel) magnitude levels and the amplitude of the 
middle magnitude level (16 dots, 200 ms, 6 pixel). Doing 
so, we obtained two bins of EEG data corresponding to a 
“higher” and a “lower” magnitude (Fig. 2B). We then aver-
aged the data within the two bins to obtain two average 
data points for each of the five features included in the 
analysis. We repeated this step for each participant, in 
order to form the training dataset (for a total 20 data 
points for each feature and for each class entered into the 
analysis, equal to the number of participants in the mag-
nitude task condition). According to the leave-two-out 
procedure, the classifier (support vector machine; C = 1) 
was then trained on a set of 19 + 19 datapoints (“higher” 
vs. “lower” magnitude, respectively; see Fig.  2C). The 
second step was to create the test dataset, based on the 
data of the contrast task condition. Considering the same 
time window (Fig. 2D), we again sorted the trials accord-
ing to the magnitude and computed the difference in 
response amplitude between magnitudes either lower (12 
dots, 140 ms, 4 pixel) or higher (24 dots, 280 ms, 8 pixel) 
than the middle level (16 dots, 200 ms, 6 pixel). Then, we 
computed the average within these two bins (Fig. 2E), for 
each of the five features, to create the test dataset. The 
classifier was then tested on these two datapoints corre-
sponding to the average data of a single participant rela-
tive to the two classes of the analysis (“higher” and 
“lower” magnitude). This resulted in a measure of classi-
fication accuracy based on the ability of the classifier to 
classify the corresponding magnitude of each of the two 
datapoints. These training and testing steps were 
repeated in order to test all the possible subsets of the 
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training datapoints (iteratively leaving out each datapoint 
in the training set), averaging the resulting classification 
accuracies. Then, this entire procedure was repeated for 
each participant in the contrast task condition, in order to 
obtain a set of classification accuracies equal to the num-
ber of participants in this condition, and for each time 
window throughout the epoch. Overall, each iteration of 
the analysis, within each time window and magnitude, 
was performed on a training dataset including 190 values 
(38 observations × 5 features) and a test dataset includ-
ing 10 values (2 observations × 5 features).

To test for the significance of the distribution of classi-
fication accuracies obtained at each time window, we 

used a permutation (sign flipping) procedure. Namely, at 
each time window, we subtracted 0.5 from the classifica-
tion accuracies (i.e., the chance level), and swapped the 
sign of half the values. This procedure was repeated 
10,000 times taking random splits of the data, and we 
assessed the number of times that the classification 
accuracy of the sign-swapped data was equal or higher 
than the actual average classification accuracy observed. 
The proportion of times in which the simulated accuracy 
equaled or exceeded the actual value was considered 
the p-value of the test. The alpha level applied to these 
tests was 0.05. After the tests, we also applied a thresh-
old of at least three consecutive time windows (i.e., only 

Fig. 2.  Multivariate analysis. Schematic depiction of the different main steps of the multivariate analysis across the 
two experimental conditions. (A) Selection of the time window. The analysis was performed iteratively across a series of 
15-ms time windows (5-ms step) throughout the epoch. (B) The data of each individual participant in the magnitude task 
condition were sorted according to the magnitude presented, computing a measure of difference in response amplitude 
between higher or lower magnitudes and magnitudes corresponding to the middle value. The data within these two bins 
(“higher” and “lower” magnitude) were then averaged to obtain two datapoints for each participant, for each of the five 
features (EEG channels) used in the analysis. (C) The classifier was trained on a dataset including the average data of 
all the participants in the magnitude task condition, leaving out one datapoint for each class (i.e., training on 19 + 19 
observations × 5 features). (D) The test dataset, based on the contrast task condition, was created by considering the 
same time window as the training set. (E) Considering the data of a single participant, we then binned higher and lower 
magnitudes and computed the difference in response amplitude compared to the middle magnitude level. Finally, we 
averaged the data within these two bins. (F) The classifier was tested on the average data of a single participant, with 
1 + 1 observations × 5 features. This procedure was then repeated to consider each possible subset of training data, 
iteratively leaving out each data point. Finally, the entire procedure was repeated using data from each of the participants 
in the contrast task condition as test dataset, in order to obtain a set of classification accuracies equal to the sample 
size of the contrast task condition (N = 29). Note that panels C and F show an example of training and testing in a 
2-dimensional space (i.e., two features, or EEG channels), while the actual procedure involved a 5-dimensional space 
based on the channels included in the analysis, which cannot be represented in the figure.
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clusters of at least three consecutive time windows were 
considered significant). Note that we chose to use the 
contrast task condition data as the testing dataset in 
order to have a larger distribution of classification accu-
racy values to test with permutations, with the rationale 
of achieving more robust and stable results. We did not 
perform the analysis in the opposite direction (training 
with the contrast task data and testing with the magni-
tude task data) since the two sets of results would be 
difficult to average. Namely, due to the nature of this pro-
cedure, analyses in different directions would result in 
different distributions of classification accuracy values 
(29 when testing with the contrast task data, 20 when 
testing with the magnitude task data), making it difficult 
to combine them. All the analyses and statistical tests 
involving EEG data were performed in Matlab (version 
r2021b).

3.  RESULTS

In this study, we measured the neural (EEG) signature of 
magnitude processing and integration with subjects 
either engaged in actively judging the magnitude of the 
stimuli (magnitude task condition), or passively watching 
the modulation of different magnitudes while attending 
the contrast of the stimuli (contrast task condition). Doing 
so, we aimed at comparing such signatures to better 
understand the nature of the magnitude integration phe-
nomenon. Specifically, if magnitude integration depends 
on post-perceptual cognitive processes, we predicted to 
observe a unique signature of magnitude processing only 
when performing a magnitude task. Conversely, if the 
integration effect arises from automatic perceptual pro-
cesses, then similar signatures of magnitude processing 
should be observed in both the magnitude task and the 
contrast task.

3.1.  Magnitude task condition

In the magnitude task condition, participants performed 
a magnitude classification task of the numerosity, dura-
tion, and item size of dot-array stimuli. Which dimension 
to judge was indicated to the participants via a retrospec-
tive cue (in a trial-by-trial fashion), thus forcing them to 
attend the stimulus as a whole rather than focusing on a 
single dimension. The procedure of the task condition is 
depicted in Figure 1A.

First, we assessed the behavioral effects of magnitude 
integration, which are shown in Figure 3A–C. To assess 
the mutual biases across the different dimensions, we 
first computed the point of subjective equality (PSE; see 
Section 2.4) as a measure of accuracy in the task. Then, 
we computed a magnitude integration effect index based 

on the difference in PSE caused by each level of the inter-
fering magnitudes compared to the reference magnitudes 
(i.e., the middle levels of numerosity, duration, and size). 
To assess the significance of magnitude integration, we 
performed a series of linear mixed-effect (LME) regres-
sion models within each type of task. In the model, we 
entered the magnitude integration effects as the depen-
dent variable, the ratio of each interfering magnitude level 
with the reference level, and the magnitude itself (e.g., 
“duration” and “size” in the numerosity task), as predic-
tors, and the subjects as well as the ratio and magnitude 
type as the random effects. The ratio (instead of the mag-
nitude value) was chosen as a predictor to test the effect 
of both interfering dimensions on each type of judgment 
within the same test.

In the numerosity task (Fig. 3A), we observed robust 
effects of both duration and size, although in opposite 
directions. While duration had a congruent effect (i.e., the 
longer the duration, the higher the perceived numerosity), 
size had an opposite, repulsive effect: the bigger the size 
of the dots, the lower the perceived numerosity. The LME 
test (adjusted-R2  =  0.68), indeed, showed a significant 
interaction between ratio and magnitude (b  =  20.96, 
t = 5.81, p < 0.001). This interaction was followed up with 
simpler LME tests considering each interfering dimen-
sion separately. The results of these additional tests 
showed that both duration (adj-R2  =  0.64, b  =  5.47, 
t = 2.64, p = 0.009) and size (adj-R2 = 0.71, b = -15.49, 
t = -4.69, p < 0.001) induced significant biases on numer-
osity judgments. In the duration task (Fig.  3B), we 
observed again a significant interaction between ratio 
and magnitude (adj-R2  =  0.53, b  =  -12.02, t  =  -2.57, 
p = 0.011), this time suggesting that size had a stronger 
influence on duration compared to the effect of numeros-
ity on duration. Two follow-up LME tests, however, 
showed significant congruent biases induced by both 
numerosity (adj-R2 = 0.44, b = 7.28, t = 2.42, p = 0.017) 
and size (adj-R2 = 0.51, b = 19.29, t = 4.57, p < 0.001). 
Finally, looking at Figure 3C, it is clear that size was the 
magnitude most resistant to biases from other dimen-
sions. Although weaker, the LME test (adj-R2  =  0.66) 
showed a significant main effect of ratio (b  =  4.45, 
t  =  3.08, p  =  0.002), no main effect of magnitude 
(b = -1.07, t = -0.32, p = 0.75), and no interaction (b = 0.12, 
t = 0.07, p = 0.94). Figure 3E–J shows the individual mea-
sures of the magnitude integration effect across the 
group, with each panel corresponding to each effect in 
each task. As shown by the figure, the strength of the 
effect varies between different participants, but its direc-
tion (i.e., overestimation for increasing magnitude, except 
for the effect of size on numerosity) is consistent across 
the majority of participants (the directionality is not shown 
in the figure for the ease of visualization). For instance, 
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the effect of numerosity on either duration or size worked 
consistently on 75–85% of the participants (respectively). 
The effect of duration had a consistent (positive) direction 
in 80% and 75% of participants, respectively in the 
numerosity and size task. Finally, the effect of size on 
numerosity and duration worked consistently (either in 
the negative or positive direction) in 90% and 75% of the 
participants, respectively. Overall, the behavioral results 

of the classification task showed robust and systematic 
mutual biases across all the dimensions tested, albeit 
with some partial asymmetries.

To assess the participants’ precision in the task, we 
considered the Weber fraction (WF; computed as the ratio 
of the just noticeable difference and the PSE), which is 
shown in Figure 3D. On average, size showed the lowest 
WF (0.18 ± 0.08), suggesting the highest precision in the 

Fig. 3.  Behavioral effects of magnitude integration. (A) Magnitude integration effects of duration and size on numerosity 
judgments. The values of the two interfering dimensions are reported on the upper and lower x axes. (B) Magnitude 
integration effects on duration judgments. (C) Magnitude integration effect on size judgments. The data points are slightly 
jittered for the ease of visualization. (D) Average Weber fraction in the three tasks. Error bars are SEM. (E–J) Plots showing 
the individual measures of the magnitude integration effect across the group, as a function of the ratio between each level 
of magnitude and the middle level. (E) Plot of individual effects relative to the effect of duration in the numerosity task.  
(F) Effect of size in the numerosity task. (G) Effect of numerosity in the duration task. (H) Effect of size in the duration task. 
(I) Effect of numerosity in the size task. (J) Effect of duration in the size task. Note that the scale of the y axis in each plot 
is different, in order to better display the variability of the effect in different conditions. The light blue diamonds show the 
average, which corresponds to the datapoints plotted in panels A–C.
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Fig. 4.  Event-related potentials (ERPs) evoked by each magnitude in the two experimental conditions. (A–C) Data from 
the magnitude task condition. (D–F) Data from the contrast task condition. (A) ERPs evoked by the stimulus numerosity in 
the magnitude task condition. (B) ERPs evoked by the stimulus duration in the magnitude task condition. (C) ERPs evoked 
by item size in the magnitude task condition. (D) ERPs evoked by the stimulus numerosity in the contrast task condition. 
(E) ERPs evoked by the stimulus duration in the contrast task condition. (F) ERPs evoked by item size in the contrast task 
condition. In all panels, the green wave indicates the linear contrast of the ERPs. Note that while numerosity and size 
ERPs were time-locked to the onset of the stimuli, ERPs corresponding to duration were re-aligned to the offset. The zero 
in (B) and (E) thus indicates the offset of the stimuli. The vertical dashed line indicates the onset or offset of the stimuli. The 
horizontal dashed line indicates the zero of the amplitude scale. All the ERPs are the average of signals from channels Oz, 
O1, and O2. The shaded area around the green contrast wave represents the SEM.

task, followed by numerosity (0.24 ± 0.10), and finally dura-
tion (0.52 ± 0.32), which was the most difficult dimension 
to judge. A one-way repeated-measure ANOVA (with fac-
tor “task”) confirmed that the WFs across the three types 
of task are significantly different (F(2,38) = 18.59, p < 0.001), 
in line with previous studies (Fornaciai et al., 2023).

After assessing the behavioral effects, we went on and 
addressed the neural signature of magnitude integration. 
First, we plotted the event-related potentials (ERPs) 
evoked by the different levels of each magnitude, irre-
spective of the task performed. This was done to get an 
initial idea of how the different magnitude dimensions 

modulated the brain responses to the stimuli. This is par-
ticularly important in the case of duration, since the align-
ment of ERPs to the offset of the stimuli might introduce 
spurious results due to the mismatch of the onset 
response, which needs to be considered in order to con-
textualize the significance of effects at different latencies. 
The ERPs are shown in Figure  4A–C. In the case of 
numerosity (Fig. 4A), we observed a first negative peak of 
numerosity-sensitive responses at 150–200  ms after 
stimulus onset, followed by weaker but more sustained 
responses throughout the epoch. In the case of duration, 
aligning the waves to the offset of the stimuli, indeed, 
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created a misalignment of the onset responses, which 
introduced spurious effects that are clearly visible in Fig-
ure 4B. In other words, a seemingly large deflection in the 
contrast amplitude is actually driven by a peak in ampli-
tude of a single level of duration, rather than a consistent 
peak present at all levels of duration. However, we also 
observed a large modulation at around 300 ms after stim-
ulus offset that seems to genuinely reflect duration, as it 
involves a deflection evident at all the levels of duration. 
Finally, brain responses sensitive to item size (Fig.  4C) 
showed a main peak at around 250 ms, with a large pos-
itive deflection. Although the effect of size starts at the 
first negative deflection at around ~180 ms, where bigger 
size is seemingly associated with smaller amplitudes, the 
effect at following latencies shows higher positive ampli-
tudes for bigger sizes. The large positive peak of the con-
trast amplitude (green wave in Fig.  4C), encompassing 
both the negative and positive peak, suggests that the 
two effects may not be independent, but possibly reflect 
similar more positive (or less negative) amplitudes for 
increasing size.

To better address the significance of magnitude-
sensitive brain responses, we computed a measure of 
ERP contrast based on the difference between the 
extreme levels of the interfering dimensions’ ranges. 
Such a measure of contrast (or difference) across ERPs, 
indeed, provides a more direct index of the sensitivity of 
brain responses to the different magnitudes, and makes 
it easier to assess the extent to which the amplitude of 
brain responses reflects the modulation of magnitude 
information. Specifically, for each level of each magni-
tude, we contrasted the ERPs as a function of the 
extreme levels of the interfering dimensions. For exam-
ple, to compute the effect of numerosity, we subtracted 
the ERP corresponding to the combination of 100  ms 
and the two extreme levels of numerosity (8 and 32 dots). 
The same subtraction was performed for the combina-
tion of 140, 200, 280, and 400 ms and the extreme levels 
of numerosity. The same was done for the combination 
of each level of size and the extreme levels of numerosity. 
The effects of duration and size were computed in the 
same way by switching the dimension. The average of 
this contrast measure, reflecting the effect of the different 
magnitudes in driving ERPs, is shown in Figure 5. Addi-
tionally, Figure 5 shows the topographic distribution of 
the contrast amplitude in a 50-ms window around the 
main peak of each corresponding contrast wave. To 
assess the significance of the contrast amplitude, we 
performed a series of one-sample t-tests against zero, 
corrected for multiple comparisons with false discovery 
rate (FDR; q = 0.05). When reporting the results below, 
we indicate the range of t-values and FDR-adjusted 
p-values as [min, max].

The numerosity-sensitive brain responses (Fig.  5A) 
showed four significant latency windows. The strongest 
effect was observed at a negative deflection at 120–
175 ms (t = [-6.97, -2.41], p = [<0.001, 0.049]) after stim-
ulus onset, which was around the peak of contrast 
amplitude (-2.7 μV) observed at 145  ms after stimulus 
onset. This peak was followed by additional significant 
windows at 200–240  ms (t  =  [2.45, 3.62], p  =  [<0.001, 
0.046]), 355–390 ms (t = [-3.18, -2.41], p = [0.012, 0.048]), 
and 425–700  ms (t  =  [-5.61, -2.47], p  =  [0.001, 0.044]) 
after stimulus onset. Regarding the effect of duration on 
ERPs (Fig. 5B), we observed four significant latency win-
dows. The first one was observed before stimulus offset, 
spanning from -170 to -85  ms (t  =  [-6.55, -2.58], p = 
[<0.001, 0.049]). Then, we observed two relatively early 
windows at 30–70  ms (t  =  [-3.66, -2.58], p  =  [0.007, 
0.049]) and 145–195  ms (t  =  [2.58, 4.50], p  =  [0.003, 
0.049]). Looking at the ERPs shown in Figure 4B, these 
three latency windows, however, appear to be driven 
each by a single duration level, due to the onset responses 
(i.e., only one wave shows a deflection while the others 
are flat). Such responses cannot thus be considered as 
genuine correlates of duration, but are spurious effects 
due to the re-alignment of brain waves to the offset of the 
stimuli. A more genuine peak of activity driven by dura-
tion was instead present at 270 ms after the offset (-3.2 
μV), and we observed a significant latency window 
around this peak, spanning 240–440 ms (t = [-5.99, -2.60], 
p = [<0.001, 0.048]). An alternative possibility, however, is 
that such a peak at ~300 ms might be driven by differ-
ences occurring earlier in the ERPs (for instance at the 
onset response), propagating to later latencies and 
amplified during the interval between the onset and the 
offset of the stimulus. To assess this possibility, we time-
locked the ERPs corresponding to the different durations 
to the onset of the stimuli, and assessed potential differ-
ences at the onset response (data not shown). The onset 
response peaked at 175  ms, and no difference was 
observed in the amplitude at such a peak (LME regres-
sion, adj-R2 = 0.98, b < 0.001, t = -0.06, p = 0.95). This 
shows that the peak at 300  ms post-offset does not 
reflect differences in the level of amplitude at the onset 
response. This peak, thus, more likely reflects a genuine 
correlate of duration processing, like an accumulation of 
information over time (e.g., see also Ernst et al., 2017). 
Finally, in the case of size (Fig. 5C), the peak of activity 
was observed at 240 ms (2.4 μV). The largest significant 
latency window was observed around this peak, span-
ning 190–320 ms (t =  [3.14, 8.44], p =  [<0.001, 0.049]). 
Two additional, smaller significant windows were 
observed at very early latencies (30–45  ms; t  =  [-4.04, 
-3.23], p  =  [0.009, 0.042]), and at later latencies (600–
615 ms; t = [-3.59, -3.16], p = [0.022, 0.048]). In all cases, 
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the topographic distribution of scalp activity around the 
peaks (plotted besides each panel, Fig. 5A–C) showed a 
posterior distribution consistent with activity in the occip-
ital cortex.

Our main goal in the magnitude task condition was, 
however, to identify the latency windows whereby the 
modulation of brain activity predicts the magnitude inte-
gration bias observed behaviorally. We then further com-
puted two measures of the effect that could be related to 
each other in data analysis: ΔPSE, reflecting the behavioral 
effect, and ΔERP, reflecting the neural effect of magni-

tudes. This is very important, since individual ERPs corre-
sponding to different levels of magnitudes are very difficult 
to relate to the behavioral effect, which is instead com-
puted as a difference in perceived magnitude across differ-
ent levels of the stimuli. In order to assess the relationship 
between the neural and behavioral effect of magnitude 
integration, we thus needed equivalent measures that can 
be related to each other and tested for statistical signifi-
cance. These measures were computed by subtracting 
either the PSE or the ERP amplitude of each level of the 
interfering magnitudes from the PSE/ERP corresponding 

Fig. 5.  Average contrast amplitude reflecting the neural effects of the three magnitudes. (A–C) Data from the magnitude 
task condition. (D–F) Data from the contrast task condition. The contrast amplitude in this case was computed as the 
difference between the extreme levels of each “interfering” magnitude, separately for each level of each magnitude. For 
instance, the effect of numerosity on duration was computed as the difference between ERPs corresponding to 100 ms/32 
dots and 100 ms/8 dots, and so on for the other levels of duration. The same was done for the effect of numerosity on 
size, and the resulting contrasts were averaged together to increase the signal-to-noise ratio. A similar procedure was then 
used to compute the effect of duration and the effect of size. (A) Contrast amplitude reflecting the effect of numerosity in 
the magnitude task condition. (B) Contrast amplitude reflecting the effect of duration in the magnitude task condition.  
(C) Contrast amplitude reflecting the effect of size in the magnitude task condition. (D) Contrast amplitude reflecting the 
effect of numerosity in the contrast task condition. (E) Contrast amplitude reflecting the effect of duration in the contrast 
task condition. (F) Contrast amplitude reflecting the effect of size in the contrast task condition. The black lines at the 
bottom of the plots mark the significant latency windows assessed with a series of FDR-corrected one-sample t-tests. In 
panel B and E, the significant latency windows driven by the onset response (i.e., spurious results due to the misalignment 
of the onset) have been marked in grey and not considered for further data analysis. The vertical dashed line indicates the 
onset or offset of the stimuli. The horizontal dashed line indicates the zero of the amplitude scale. The shaded area around 
the wave represents the SEM. The topographic plots besides each panel show the distribution of scalp activity in a 50-ms 
window around the main peak of each wave. All waves shown in the figure reflect the average of signals from channels Oz, 
O1, and O2.
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to the middle, reference level. For the ΔERP, this measure 
was computed at each time point throughout the epochs, 
and separately for the different types of task (see Fig. 6). 
Doing so, we thus computed the effect of numerosity in the 
duration and size task (Fig. 6A, B), the effect of duration in 
the numerosity and size task (Fig. 6C, D), and the effect of 
size in the numerosity and duration task (Fig. 6E, F).

To address the relationship between neural and behav-
ioral measures of magnitude effects, we first looked for 
latency windows showing a significant modulation of 
ΔERP as a function of the different levels of the magni-
tudes. To do so, we performed a series of LME tests indi-
vidually for the effect of each magnitude in each task. In 
the LME model, we entered the ΔERP as the dependent 
variable, the ratio of each magnitude level with the middle 
level as the predictor, and the subjects, as well as the ratio, 
as random effects. The LME tests were performed across 
a series of 10-ms windows with a 5-ms step, in a sliding-
window average fashion. To control for multiple compari-
sons, we again applied an FDR procedure with q = 0.05. 
Clusters of less than three consecutive significant tests 
(after FDR) were not considered. The results of these tests 
are shown with black lines at the bottom of each plot in 
Figure 6, marking the significant latency windows.

After identifying the latencies showing a significant 
modulation of ΔERP, we looked for a relationship between 
ΔERP and ΔPSE within these windows. We thus per-
formed a series of LME tests (10-ms windows with 5-ms 
step), including ΔPSE as the dependent variable and 
ΔERP as the predictor. The subjects and the ΔERP were 
also added as random effects. The effect of numerosity 
on duration (Fig. 6A) showed three windows whereby the 
modulation of ΔERP could predict the behavioral effect 
(marked with grey shaded areas in the figure), a larger 
early window at 110–170  ms, followed by two smaller 
windows at 440–450  ms and 665–695  ms (b  =  [0.007, 
0.010], t = [2.04, 3.68], p = [<0.001, 0.044], adj-R2 = [0.77, 
0.79]). The effect of numerosity on size (Fig. 6B) showed 
again three significant windows, but clustered at later 
latencies: 370–390, 445–585, and 605–695 ms (b = [0.087, 
0.180], t = [2.05, 4.12], p = [<0.001, 0.024], adj-R2 = [0.78, 
0.83]). The effect of duration on numerosity (Fig.  6C) 
showed a single large significant window, spanning 230–
415 ms (b = [0.301, 0.597], t = [2.30, 3.90], p = [<0.001, 
0.031], adj-R2  =  [0.79, 0.83]). The effect of duration on 
size (Fig. 6D) showed two smaller windows, with a timing 
generally consistent with the effect on numerosity: 265–
285 and 375–415 ms (b = [0.067, 0.088], t = [2.02, 2.79], 
p = [0.007, 0.046], adj-R2 = [0.81, 0.82]). Finally, the effect 
of size on numerosity (Fig. 6E) showed a single, large sig-
nificant window at 190–310  ms (b  =  [0.845, 1.078], 
t = [3.18, 6.48], p = [<0.001, 0.002], adj-R2 = [0.92, 0.99]), 
while the effect of size on duration (Fig. 6F) showed two 

significant windows at 215–290 and 515–530  ms 
(b = [-0.009, 0.013], t = [-3.06, 2.12], p = [0.003, 0.041], 
adj-R2 = [0.76, 0.79]). These results show that the behav-
ioral effect of magnitude integration could be reliably pre-
dicted by the modulation of magnitude-sensitive 
responses in the different task types, providing a neural 
signature of the effect.

3.2.  Contrast task condition

In the contrast task condition, participants watched a 
stream of dot-array stimuli modulated in numerosity, 
duration, and item size, and responded to occasional 
oddball stimuli defined by a lower contrast. No instruc-
tion suggested the participants to explicitly attend the 
magnitudes of the stimuli. This different protocol was 
thus designed to provide a cleaner index of the responses 
to the different magnitudes, not confounded by magni-
tude decision-making or other task-related processes. If 
magnitude integration arises from automatic perceptual 
processes, then we expected to observe a similar modu-
lation of brain responses consistent with the timing 
observed in the magnitude task condition. Instead, if 
magnitude-related decision making is necessary for 
magnitude integration to occur, the modulation of brain 
responses linked to the behavioral effect should not 
occur during a different task, like the one focused on the 
contrast of occasional oddball stimuli that we used in this 
condition.

First, we assessed the ERPs corresponding to the dif-
ferent levels of the three magnitudes (Fig. 4D–F), similarly 
to what we did in the magnitude task condition. As in the 
case of the magnitude task, this is an important step 
especially when it comes to the responses to duration. 
Indeed, the misalignment of onset responses can intro-
duce spurious effects that need to be evaluated to con-
textualize the significance of effects in terms of ERP 
amplitude. The overall pattern was largely consistent with 
that observed in the magnitude task (see Fig. 4A–C), with 
however some differences. Numerosity (Fig. 4D) showed 
an early positive deflection that we did not observe in the 
magnitude task condition, with the magnitude of the 
stimuli modulating the amplitude in the negative direction 
(i.e., the smaller the numerosity, the higher the positive 
deflection in response amplitude). Looking at the con-
trast amplitude (green wave in Fig. 4D), such an opposite 
effect of numerosity might, however, be part of the sub-
sequent modulation in the negative direction, showing 
larger negative amplitudes for increasing numerosity. 
Additionally, ERPs at later latencies showed a weaker 
modulation compared to the magnitude task. Duration 
(Fig.  4E) showed a similar deflection compared to the 
magnitude task, but the modulation of amplitude was in 
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the opposite direction (i.e., see topographic plots besides 
the panels). Finally, size (Fig. 4F) showed instead ERPs 
consistent with the magnitude task. Again, the effect of 
size on ERPs starts with a negative deflection whereby 
bigger sizes seem to be associated with smaller ampli-
tudes. However, also in this context, it is more likely that 
the earlier negative peak and the later positive peak form 
a continuum whereby increasing size is associated with 
more positive (or less negative) amplitudes—as sug-
gested by the contrast amplitude (green wave in Fig. 4F) 
showing a single deflection in the positive direction.

To better assess the significance of the magnitude-
sensitive brain responses, we computed again a measure 
of contrast based on the difference between the extreme 
levels of each magnitude (Fig. 5D–F), as in the magnitude 
task condition. This was done in order to achieve a more 
direct index of sensitivity to magnitude, reflecting the 
extent to which the ERPs are modulated by the different 
levels of each magnitude dimension. The contrast ampli-
tude was then tested with a series of one-sample t-tests 
against zero, corrected with FDR (q = 0.05). In the case of 
numerosity (Fig. 5D), we observed a significant early win-
dow (130–150 ms; t = [-4.34, -3.64], p = [0.026, 0.047]), 
showing a negative deflection consistent with the magni-
tude task (see Fig. 4A). The peak of activity in this window 
(-0.62 μV) was at 140 ms. Differently from the magnitude 
task, we did not observe significant latency windows 
later on in the epoch. The effect of duration (Fig.  5E) 
showed three significant windows: the first one at 20–
60 ms (t = [-3.99, -2.68], p = [0.003, 0.049]), the second at 
160–210 ms (t = [2.68, 4.34], p = [0.002, 0.049]), and the 
third at 270–360 ms (t = [2.71, 4.76], p = [0.002, 0.043]). 
Note, however, that similarly to the magnitude task con-
dition, the first two significant windows appear to be 
mostly driven by the onset responses of individual dura-
tions, while the last window shows a consistent deflec-
tion in responses corresponding to all the different levels 
of duration (see Fig. 3E). The topographic plot showing 
the distribution of peak activity (Fig.  5E), thus, reflects 
this last latency window (peak at 290 ms, 1.05 μV). Differ-
ently from the magnitude task condition, however, the 
contrast amplitude here showed a positive, rather than 
negative, deflection. Similarly to the magnitude task con-
dition, we also additionally assessed whether there may 
be earlier differences in the response to different dura-
tions time-locked to the onset, and especially at the 
onset response. The peak of the onset response was 
identified at 178 ms after stimulus onset, and again we 
did not observe any difference in the amplitude of ERPs 
corresponding to different durations (LME regression, 
adj-R2 = 0.99, b < 0.001, t = -0.46, p = 0.64). Finally, size 
(Fig.  5F) showed a large main window at 155–380  ms 
(t  =  [2.62, 10.88], p  =  [<0.001, 0.048]), with a peak at 

245 ms (1.62 μV) consistent with the effect of size in the 
magnitude task condition. In addition, we observed two 
additional, smaller windows at 60–75 and 400–410  ms 
(t = [2.62, 3.63], p = [0.005, 0.049]). Similarly to the mag-
nitude task, the topography of peak amplitude over the 
scalp showed a posterior distribution consistent with the 
occipital cortex (see plots beside panel D–F).

In order to better compare the modulation of brain 
responses in the magnitude task and in the contrast task 
condition, we also computed the ΔERP measure (Fig. 
6G–I). The relationship between the behavioral and neural 
measures of magnitude integration in the magnitude task 
was, indeed, evaluated using this measure. Here, we thus 
computed the same measure in order to assess whether 
the modulation of brain responses in the contrast task 
occurs at the same processing stages (i.e., latency win-
dows) that showed a relationship with the behavioral 
effect. The ΔERPs were assessed with a series of paired 
t-tests, performed considering 10-ms windows (step = 5 
ms) as in the magnitude task condition, corrected with 
FDR (q = 0.05). The overall timing of the significant win-
dows was consistent with the contrast measure (see 
Fig.  5D–F). ΔERPs reflecting the effect of numerosity 
(Fig. 6G) showed a significant modulation at 130–150 ms 
(t = [3.64, 4.33], p = [0.025, 0.047]). The effect of duration 
(Fig. 6H) showed a modulation at 225–285 ms (t = [-6.91, 
-2.78], p = [<0.001, 0.049]), and at 380–420 ms (t = [-3.68, 
-2.79], p = [0.016, 0.049]) after stimulus offset. Finally, in 
the case of size (Fig. 6I), we observed the main modula-
tion in a large window spanning 160–380 ms (t = [-10.87, 
-2.62], p  =  [<0.001, 0.049]). We again observed two 
smaller significant windows at 60–75  ms (t  =  [-3.63, 
-2.65], p  =  [0.005, 0.046]) and 400–410  ms (t  =  [-2.85, 
-2.62], p = [0.032, 0.049]). As a comparison, Figure 6G–I 
shows with dotted boxes the latency windows where we 
observed a significant relationship between neural and 
behavioral measures of magnitude integration in the 
magnitude task condition (Fig.  6A–F). In all cases, we 
observed an overlap between the significant windows in 
the contrast and magnitude task condition.

3.3.  Multivariate decoding analysis

To achieve a more direct comparison of magnitude-
sensitive brain activity during the magnitude and contrast 
task, we performed a multivariate “decoding” analysis 
across the two experimental conditions. Indeed, while 
the evidence that we have gathered so far from the com-
parison of ERPs across conditions is mostly qualitative, 
the multivariate analysis can provide a quantitative mea-
sure of how similar the pattern of brain activity evoked by 
magnitudes in different conditions is. In the analysis, we 
trained a classifier (support vector machine) with data 
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from the magnitude task condition, and tested its ability 
to decode magnitude-sensitive brain activity in the con-
trast task condition (Fig.  2). This training and testing 
direction was chosen to obtain a larger set of classifica-
tion accuracy (CA) values, in order to achieve more robust 
and stable results when testing the statistical significance 
of the decoding. Indeed, the analysis was performed by 
training the classifier on a set of data points each formed 
by the average data of one participant. The classifier was 
then tested separately on the average data of each par-
ticipant in the contrast task condition group, according to 
a leave-two-out procedure, that is, two datapoints each 
corresponding to a class entered into the analysis were 
left out from the training set, and two independent data-
points from the contrast task conditions were used for 
testing. This procedure thus resulted in a distribution of 
CA values corresponding to the number of participants in 
the contrast task condition. We did not run the analysis in 
the opposite direction (i.e., training with the contrast task 
data and testing with the magnitude task data) since, due 
to the different number of data points (i.e., due to the 
different number of participants in the two conditions), 
the results would be difficult to combine. See Section 2 
for more information about the decoding procedure. 
According to our hypothesis, if the brain responses 
related to magnitude processing and integration are sim-
ilar irrespective of the task, then the classifier should be 
able to decode magnitude information from the contrast 
task data. Otherwise, if magnitude processing entails 
mechanisms specific to the task performed, no above-
chance decoding should be observable. The ability of the 
classifier to decode magnitude information was evalu-
ated based on the distribution of CA values, obtained 
across a series of small time windows (i.e., 15-ms win-
dow with 5-ms step) throughout the epochs. The distri-
bution of CA values at each time window was then tested 
with a permutation (sign flipping) test to assess whether 
it was significantly higher than chance level (0.5; see Sec-
tion 2 for more information). A depiction of the different 
steps of the analysis is shown in Figure  2, while the 
results are shown in Figure 7.

Overall, the multivariate analysis revealed several 
latency windows in which magnitude-sensitive brain 
responses in the contrast task condition could be suc-
cessfully predicted based on the training with the magni-
tude task condition data. Below, the results are reported 
in terms of the range of CAs observed (CA = [min, max]) 
and p-values of the permutation tests (p = [min, max]). In 
the case of numerosity (Fig. 7A), the analysis showed sig-
nificant above-chance decoding at four latency windows. 
Namely, an early window spanning 110–145  ms after 
stimulus onset (CA =  [0.57, 0.67], p =  [<0.001, 0.010]), 
followed by later windows at 360–395 ms (CA =  [0.59, 

0.65], p = [<0.001, 0.049]), 475–500 ms (CA = [0.56, 0.57], 
p = [0.026, 0.049]), and 585–695 ms (CA = [0.57, 0.64], 
p = [<0.001, 0.036]). In the case of duration (Fig. 7B), we 
observed six significant latency windows, at 20–60  ms 
after stimulus offset (CA  =  [0.58, 0.73], p  =  [<0.001, 
0.013]), 95–135 ms (CA = [0.62, 0.69], p = [<0.001, 0.017]), 
185–235 ms (CA = [0.54, 0.64], p = [<0.001, 0.038]), 285–
310 ms (CA = [0.53, 0.55], p = [0.004, 0.048]), 370–460 ms 
(CA = [0.56, 0.65], p = [<0.001, 0.039]), and 515–550 ms 
(CA = [0.58, 0.67], p = [<0.001, 0.035]). Finally, in the case 
of size (Fig.  7C), we observed three significant latency 
windows, at 270–430 ms (CA = [0.60, 0.85], p = [<0.001, 
0.020]), 440–495 ms (CA = [0.58, 0.61], p = [0.008, 0.047]), 
and 630–680 ms (CA = [0.58, 0.62], p = [<0.001, 0.049]).

4.  DISCUSSION

In the present study we assessed and compared the sig-
natures of magnitude integration in two different condi-
tions: when participants are engaged in actively judging 
the magnitude of the stimuli, or when they passively 
watched a modulation of magnitude while attending 
another feature (i.e., contrast). The phenomenon of mag-
nitude integration—that is, the mutual biases usually 
observed across different dimensions—is a hallmark of 
magnitude perception. Indeed, stimulus dimensions such 
as numerosity, duration, and size systematically interact 
with each other, leading to biases when judging them. 
Such mutual interactions have played a pivotal role in the 
development of influential theories like “a theory of mag-
nitude” (ATOM; Walsh, 2003) and the “metaphor” theory 
(Casasanto & Boroditsky, 2008). However, the nature of 
this bias and its underlying mechanisms remain unclear.

Different mechanisms have been proposed to explain 
the interaction of magnitude dimensions. On the one 
hand, according to ATOM, the interaction would occur in 
perceptual processing due to the encoding of different 
dimensions with a common neural code (Walsh, 2003). In 
support of such a perceptual account of magnitude inte-
gration, we have recently shown that the effect relies on 
a mechanism similar to perceptual binding, inducing a 
positive bias across dimensions only when they are con-
veyed by the same stimulus (i.e., as opposed to magni-
tudes conveyed by separate, superimposed stimuli; 
Togoli, Bueti, et al., 2022). Recent neuroimaging studies, 
however, albeit showing common neural substrates, 
failed to provide evidence for a shared neural code 
(Borghesani et  al., 2019; Hendrikx et  al., 2024; Tsouli 
et al., 2022). According to the metaphor theory, on the 
other hand, the effect would instead arise at the concep-
tual or linguistic level, due to the use of “spatial” con-
cepts to describe time (e.g., a “long” time; Bottini & 
Casasanto, 2013; Casasanto & Boroditsky, 2008; but see 
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Whitaker et  al., 2022). This theory, however, relies on 
asymmetric effects across temporal and non-temporal 
dimensions, which depend on the type of stimuli used 
(Javadi & Aichelburg, 2012; Lambrechts et  al., 2013; 
Togoli et  al., 2021). Moreover, other authors proposed 
that magnitudes could interact during working memory 
maintenance, nudging each other while stored in memory 
(Cai et al., 2018; Cui et al., 2022), or as a bias during the 
response selection in comparisons tasks (Yates et  al., 
2012). Considering the results from these studies, 
whether magnitude integration across dimensions (e.g., 

numerosity, duration, and size) occurs at a perceptual or 
at a post-perceptual stage remains a debated topic.

In the present study, we addressed the nature of the 
magnitude integration effect by assessing a new predic-
tion. Namely, a high-level effect hinging upon magnitudes 
concurrently held in memory (i.e., one magnitude biasing 
the memory of the other) or on active decision-making 
(i.e., one magnitude interfering with the response to 
another magnitude) should show a unique neural signa-
ture not present when the magnitudes are neither explic-
itly attended nor judged. Conversely, a perceptual effect 

Fig. 7.  Results of the multivariate decoding analysis. The decoding analysis was performed by training a classifier on 
data from the magnitude task condition, and then tested on data from the contrast task condition, in order to achieve a 
more direct comparison of the magnitude-related brain processes in the two experimental conditions. (A) Classification 
accuracies obtained in the decoding of numerosity. (B) Classification accuracies obtained in the decoding of duration. 
(C) Classification accuracies obtained in the decoding of size. The horizontal dashed lines indicate the chance level (0.5). 
The vertical dashed lines mark either the time of stimulus onset for numerosity and size, or the time of stimulus offset 
for duration. The shaded area around the waves represents the SEM, which reflects the variability across the distribution 
of classification accuracy values obtained in the decoding procedure. The black lines at the bottom of the plot mark 
the latency windows where the decoding is significantly higher than chance level (0.5), as observed with a series of 
permutation tests.
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is expected to occur in a more automatic fashion, inde-
pendently from the relevance or judgment of magnitude. 
Thus, similar signatures should be observable with or 
without a magnitude judgment task.

Our behavioral results show systematic biases across 
the three magnitudes. First, numerosity is biased by both 
duration and item size. However, while duration shows a 
congruent effect (the longer the duration, the higher the 
perceived numerosity) as in previous studies (Javadi & 
Aichelburg, 2012; Togoli et  al., 2021), size induces an 
opposite bias. Although different from the relationship 
between other dimensions, this result is consistent with 
previous studies showing that the effect of dot size on 
numerosity entails a negative effect, so that the larger the 
dot size, the lower the perceived numerosity (DeWind 
et  al., 2015; Fornaciai et  al., 2019). Duration is instead 
similarly affected by both numerosity and size in a con-
gruent fashion, in line with previous studies (e.g., 
Lambrechts et al., 2013; Xuan et al., 2007), although the 
latter exerts a stronger influence. Finally, size seems the 
dimension most resistant to integration biases, and 
shows only modest, albeit significant, influences from the 
other magnitudes. Size is also the dimension that is the 
easiest to judge (Fig. 3D), and the generally lower vari-
ability of responses might explain its robustness to 
biases. However, in a previous study from our group 
addressing trial-history effects in different magnitude 
dimensions (i.e., “serial dependence” effects; Fornaciai 
et al., 2023), size showed stronger biases compared to 
duration and numerosity, while again showing the highest 
precision. Thus, the perception of size does not seem 
intrinsically more resistant to biases, and the lower effect 
observed here might be a feature of magnitude integra-
tion effects rather than a general property. Considering 
the pattern of effects across dimensions, the results thus 
show some partial asymmetries, as some dimensions are 
more vulnerable to biases than others, in line with previ-
ous studies using similar stimuli (Togoli, Bueti, et  al., 
2022; Togoli et al., 2021).

In terms of event-related potentials, in the magnitude 
task condition we found robust brain responses to the dif-
ferent magnitudes. Overall, our analyses identified a set of 
latency windows that show the stronger peaks of activity 
driven by the different dimensions. Namely, around 150 
and 250 ms after stimulus onset in the case of numerosity 
and size, and around 300 ms after stimulus offset for dura-
tion. Brain activity at these latency windows appears to be 
modulated by the different dimensions in a parametric 
fashion, according to the magnitude of the stimuli. Cru-
cially, with just one exception (i.e., the effect of numerosity 
in the size task), brain activity at or around such peaks can 
significantly predict the bias observed behaviorally: the 
larger the brain responses, the stronger the magnitude 

integration bias. In the case of numerosity, the timing 
observed here (~150  ms) is consistent with numerosity-
sensitive responses measured in previous studies. 
Although this timing is slightly earlier compared to the P2p 
component (~200 ms), that is, the ERP component most 
often associated with numerosity (Grasso et  al., 2022; 
Libertus et al., 2007; Park et al., 2016; Temple & Posner, 
1998), several studies also showed numerosity-sensitive 
responses at earlier latencies, starting at around 75–
100  ms after stimulus onset (Fornaciai & Park, 2018; 
Fornaciai et  al., 2017; Park et  al., 2016). In the case of 
duration, previous studies highlight a variety of possible 
EEG correlates of duration processing, like the contingent 
negative variation (CNV; Damsma et  al., 2021; but see 
Kononowicz & Penney, 2016), the N2 (Tonoyan et  al., 
2022), the P2 (Li et al., 2017), and the P3 (Cui et al., 2022; 
Ernst et al., 2017) ERP components. The timing shown in 
our results appears to be consistent with the results of 
Benau et al. (2018), showing duration sensitivity at around 
350 ms after stimulus offset. Finally, in terms of size, the 
timing of responses sensitive to the size of the items 
appears to be roughly consistent with previous results 
(Park et al., 2016) showing a peak at around 200 ms. Over-
all, these results, together with the results of previous 
studies, suggest that the processing of different dimen-
sions unfolds with different dynamics, with peaks at differ-
ent latencies. This supports the idea (Togoli et al., 2021) 
that each magnitude dimension affects other dimensions 
at different stages, depending on its specific processing 
dynamic. For instance, numerosity shows a relatively fast 
processing in the range of 75–200 ms after the onset of a 
stimulus (e.g., Fornaciai et al., 2017; Park et al., 2016), so 
that it can potentially interfere with early processing stages 
relative to other dimensions like duration or size. Time per-
ception, instead, requires the entire interval to unfold 
before a duration representation can be formed, so that its 
interference with other dimensions likely occurs at later 
processing stages after the offset of a stimulus.

Besides these differences across dimensions within 
each experiment, the crucial comparison concerns the 
responses to each magnitude across the different exper-
imental conditions. In this context, the timing of 
magnitude-sensitive brain responses in the contrast task 
revealed similar evoked activity in most of the cases, 
closely mirroring the responses observed in the magni-
tude task condition. Especially in the case of numerosity 
and size, the peaks of magnitude-sensitive activity (i.e., 
ΔERP; compare Fig. 6A–F with Fig. 6G–I) show, indeed, a 
one-to-one correspondence, with similar timing and 
polarity. In duration perception, however, although the 
timing and topography of responses is very similar, we 
observed ERPs with an opposite polarity. This may addi-
tionally suggest that while the processing of numerosity 
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and size is largely invariant across the two conditions, the 
brain responses to duration may at least partially depend 
on the task relevance of this dimension. Namely, while 
the same duration processing stage seems to get 
engaged (i.e., as suggested by brain responses at the 
same latency and with the same scalp topography), 
actively attending the magnitudes of the stimuli may 
modulate how duration information is processed. This is 
not completely surprising, as duration shows different 
properties compared to the other dimensions (i.e., dura-
tion information needs to be accumulated, while the other 
dimensions can be processed from the onset), and the 
encoding of duration information is notoriously poorer in 
vision compared to other senses (e.g., Alais & Burr, 2004; 
Cai & Connell, 2015).

Duration in this context seems, thus, to potentially 
engage different processes compared to the other dimen-
sions. The timing of the duration effect, indeed, might be 
consistent with the engagement of post-perceptual pro-
cesses, for instance involving an interference with the 
working memory traces of other magnitudes. Specifically, 
the timing of this effect is consistent with something simi-
lar to the P3 component, occurring after the offset of the 
interval. Such a component has been linked to the work-
ing memory representation of magnitude and the interfer-
ence across different dimensions occurring in working 
memory (Cui et  al., 2022). Together with the effect of 
attention and task-relevance discussed above (i.e., differ-
ent ERP polarity in the two task conditions), our result may 
suggest the involvement of later processes beyond per-
ception in driving the effect that duration exerts on other 
magnitudes. Such a later, higher-level interaction may be 
forced by the use of static stimuli creating a large mis-
match between the processing of temporal and non-
temporal dimensions (Togoli et al., 2021). Namely, due to 
the faster time course of numerosity and size processing 
(Fornaciai et al., 2017; Park et al., 2016), a duration repre-
sentation formed after the offset of the interval may no 
longer be able to interfere with the perceptual processing 
of non-temporal dimensions, but only with later post-
perceptual processes. An interesting goal for future stud-
ies is thus to address the neural signature of magnitude 
integration using dynamic stimuli in which dimensions 
such as numerosity and size unfold over time as well, 
making their processing time-course more similar to dura-
tion (see Lambrechts et al., 2013; Togoli et al., 2021, 2024).

The lack of decision-making processes related to mag-
nitude in the contrast task paradigm represents the major 
strength of this approach, as it allows to exclude the 
involvement of task-related brain processes concerning 
the maintenance and judgment of the different magni-
tudes (e.g., working memory maintenance and retrieval of 
magnitude information; Cai et al., 2018; Cui et al., 2022), 

and response biases (Yates et al., 2012). However, it also 
has the obvious limitation that magnitude integration could 
not be directly measured to confirm the effect. The striking 
similarity in the brain responses to the magnitudes, peak-
ing at the same latencies where we demonstrated a rela-
tionship with the behavioral effect and showing the same 
scalp topography, nevertheless, provides evidence that 
magnitude integration likely occurs even in the absence of 
a magnitude task. While this comparison remains qualita-
tive, the multivariate “cross-condition” decoding analysis 
provides quantitative evidence that the brain activity at 
several latency windows does not depend on the pres-
ence of a magnitude task. Indeed, the ability of the classi-
fier to successfully decode the brain responses to 
magnitude across conditions shows that similar brain pro-
cesses are engaged at specific time points, resulting in 
similar patterns of brain activity. In all cases, the latency 
windows showing above-chance decoding are largely 
consistent with the most important windows highlighted in 
the other analyses (e.g., in terms of ΔERP and its relation-
ship with the behavioral effect). Namely, the timing of 
above-chance decoding in the case of numerosity (i.e., the 
110–145 ms window), duration (i.e., 370–460 ms), and size 
(i.e., 270–430 ms) overlaps with similar windows showing 
a relationship between ERPs and behavior (in the magni-
tude task condition analysis), and with the effect of the 
different magnitudes in the contrast task condition. The 
analysis also highlights several other windows showing 
significant cross-condition decoding, suggesting that sim-
ilar patterns of brain activity emerge at multiple processing 
stages across conditions, both early and late. The decod-
ing analysis, thus, provides further evidence that magni-
tude processing entails patterns of brain activity largely 
independent from the task. In other words, with this anal-
ysis we demonstrate that the magnitude and contrast task 
condition not only entail similar magnitude-sensitive 
responses at the same processing stages, but also that 
such responses show very similar patterns of activity likely 
reflecting the same brain processes. In turn, this also sug-
gests that the magnitude integration phenomenon—which 
is reflected by activity at such latency windows—likely 
takes place irrespective from the task, in an automatic and 
perceptually-driven fashion. Even in the case of duration, 
which shows ERP of different polarity in different tasks 
and a later timing potentially consistent with post-
perceptual processes, the successful cross-decoding 
suggests at least partially similar processes occurring 
independently from decision making. Overall, according to 
this interpretation, the integration of different magnitudes 
and the relative bias would occur via perceptual processes 
affecting how we experience the different dimensions, and 
not only their memory traces or how they are judged—
especially when it come to the effect of non-temporal 
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dimensions. Namely, for instance, when we underestimate 
a duration because it is paired with a low numerosity we 
perceptually experience a shorter duration.

Another potential limitation of the present study con-
cerns the use of partially different stimulation designs, as 
well as a slightly different preprocessing (i.e., larger epochs 
in the magnitude task in the initial preprocessing). In partic-
ular, in terms of stimulation procedure, the contrast task 
condition involved smaller magnitude ranges with fewer 
levels of magnitude, and a faster presentation rate. The two 
experimental conditions were, in fact, designed inde-
pendently, in order to optimize each paradigm to the spe-
cific aim of the condition, rather than to have exactly the 
same stimuli and procedure. Such differences could, in 
turn, potentially affect the comparison between the differ-
ent conditions, limiting our ability to find a general correlate 
of magnitude processing independent of the task. How-
ever, despite these differences, we observed very similar 
brain responses to the magnitudes in terms of ERPs, and 
patterns of brain activity generalizing across the two condi-
tions and across independent groups of participants (in the 
multivariate analysis). It is important to note in this context 
that what we compared in our main analyses is not the 
absolute responses to individual levels of each magnitude—
which, indeed, could have been difficult due to the different 
ranges—but measures of sensitivity to the different magni-
tude dimensions and their effect on brain responses. 
Namely, measures such as the contrast (Fig.  5) and the 
ΔERP (Fig. 6) reflect the difference in responses across dif-
ferent magnitude levels. The main property of such indexes 
that is expected to change depending on the range is their 
amplitude (e.g., 12 and 24 dots are expected to result in a 
smaller ΔERP compared to 8 and 32 dots; compare Fig. 6A, 
B with Fig.  6G), while the timing and dynamics of brain 
responses should not be affected. We, however, never 
considered the absolute amplitude of responses in our 
analysis, as in this context it is not a particularly meaningful 
measure (i.e., due to the testing of independent groups of 
participants with likely different levels of mean ERP ampli-
tude). Thus, although the use of different paradigms, and 
particularly the different stimulation ranges, represents an 
important limitation that needs to be taken into account, 
we believe that such differences do not confound our inter-
pretation. The results themselves, in fact, demonstrate that 
very similar brain responses are evoked by the stimuli 
across the two tasks despite such differences. Neverthe-
less, using paradigms as similar as possible is probably a 
better strategy to compare different types of tasks, and 
future studies should minimize any difference to potentially 
achieve more robust results.

Differently from the present study, previous EEG results 
concerning magnitude integration (involving duration and 
length) suggested the involvement of working memory 

interference (Cui et  al., 2022). Cui et  al. (2022), indeed, 
observed effects of duration and length after the offset of 
the intervals, at ERP components usually associated with 
working memory maintenance, such as the P2 and P3b. 
While the effect of duration in Cui et al.’s work shows a 
timing consistent with the present results (~250–300 ms 
after stimulus offset), length has an effect at a much dif-
ferent timing (~300 ms after stimulus offset) compared to 
our earlier peak of responses to the size dimension 
(~250  ms after stimulus onset). Additionally, the scalp 
topography of the magnitude effects had a much more 
anterior distribution, peaking at parieto-frontal locations, 
as opposed to our results showing a posterior, occipital 
distribution. However, Cui et al. also employed much dif-
ferent stimuli: longer intervals (800–1,200 ms) and quite 
large lengths up to 15 degrees of visual angle. Consider-
ing the relatively long durations and the fact that the stim-
uli were marked only at the beginning (onset) and end 
(offset) point, it is not surprising that they engaged mem-
ory processes (e.g., see, for instance, Rammsayer & Lima, 
1991). Both magnitudes in such a task, indeed, rely on the 
memory trace of the first marker presented rather than on 
sustained sensory stimulation, making it more likely that 
any interference would involve higher-level memory pro-
cesses. Although the effect of duration on other magni-
tudes might involve working memory interference due to 
its much later timing, our results in terms of earlier per-
ceptual effects (numerosity and size) do not conflict with 
such an interpretation. Perceptual and mnemonic inter-
ferences are, indeed, not mutually exclusive processes, 
and can both occur depending on the nature of the stimuli 
and paradigm used. Our results, however, show that 
magnitude interactions can be perceptual in nature when 
based on stimuli relying on sensory/perceptual process-
ing rather than memory, at least for stimulus dimensions 
such as numerosity and size.

How would this perceptual interaction occur in the 
brain? Interestingly, our results show that the effects 
across the different magnitudes do not occur at a unique, 
generalized stage, but show different timings consistent 
with different brain processing stages. In other words, the 
interference between magnitudes seems to depend on the 
specific processing dynamics of each dimension (see also 
Togoli et  al., 2021), rather than a common processing 
stage. Our results are thus not fully consistent with the 
idea of a generalized magnitude processing system, as 
proposed by the ATOM framework (e.g., Walsh, 2003). 
Instead, the results seem more in line with recent findings 
of separate topographical cortical maps of different 
magnitudes, partially overlapping with each other 
(Fortunato et al., 2023; Harvey & Dumoulin, 2017; Harvey 
et al., 2013, 2015; Hendrikx et al., 2024; Protopapa et al., 
2019). Recently, indeed, it has been proposed that the 
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interaction between different magnitudes could arise from 
the overlap of neural populations sensitive to different 
dimensions but without neural alignments across dimen-
sions (Hendrikx et al., 2024; Tsouli et al., 2022), therefore 
arguing against the existence of a centralized mechanism 
or a common magnitude neural code (Walsh, 2003).

To conclude, our results show that the neural signa-
tures of magnitude processing and integration are very 
similar whether participants explicitly attend and judge 
magnitude information or passively watch the modulation 
of different magnitude dimensions. This, in turn, suggests 
that similar brain processing stages are engaged irrespec-
tive of the task, and thus that magnitude integration occurs 
even in the absence of magnitude decision-making. One 
exception is possibly duration, that due to its nature and 
its much later processing might interact with other dimen-
sions at post-perceptual stages, as an interference with 
working memory traces. Nevertheless, our results provide 
new evidence supporting the idea that magnitude integra-
tion can occur as a perceptual phenomenon independent 
from the task performed, affecting the phenomenological 
appearance of the stimuli, and not exclusively their mem-
ory traces or the way in which they are judged.
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