Auditory motion in the sighted and blind: Early visual deprivation triggers a large-scale imbalance between auditory and “visual” brain regions

Giulia Dormal a,b,c,⁎, Mohamed Rezk d,⁎, Esther Yakobov e, Franco Lepore a, Olivier Collignon d,⁎⁎

⁎ Centre de recherche en Neuropsychologie et Cognition (CERNEC), University of Montreal, Canada
⁎⁎ Institut de Psychologie et Institut de Neurosciences, University of Louvain, Belgium
⁎ Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Germany
⁎⁎ Department of Psychology, McGill University, Canada

A B S T R A C T

How early blindness reorganizes the brain circuitry that supports auditory motion processing remains controversial. We used fMRI to characterize brain responses to in-depth, laterally moving, and static sounds in early blind and sighted individuals. Whole-brain univariate analyses revealed that the right posterior middle temporal gyrus and superior occipital gyrus selectively responded to both in-depth and laterally moving sounds only in the blind. These regions overlapped with regions selective for visual motion (hMT+/V5 and V3A) that were independently localized in the sighted. In the early blind, the right planum temporale showed enhanced functional connectivity with right occipito-temporal regions during auditory motion processing and a concomitant reduced functional connectivity with parietal and frontal regions. Whole-brain searchlight multivariate analyses demonstrated higher auditory motion decoding in the right posterior middle temporal gyrus in the blind compared to the sighted, while decoding accuracy was enhanced in the auditory cortex bilaterally in the sighted compared to the blind. Analyses targeting individually defined visual area hMT+/V5 however indicated that auditory motion information could be reliably decoded within this area even in the sighted group. Taken together, the present findings demonstrate that early visual deprivation triggers a large-scale imbalance between auditory and “visual” brain regions that typically support the processing of motion information.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Area hMT+/V5 is classically considered to support motion processing based on visual inputs only (Watson et al., 1993; Tootell et al., 1995). However, previous studies have shown that this region selectively responds to auditory (Poirier et al., 2006; Bedny et al., 2010; Wolbers et al., 2011; Strnad et al., 2013; Jiang et al., 2014) and tactile motion (Ricciardi et al., 2007) in individuals with early-onset blindness. Whether this non-visual recruitment of hMT+/V5 is specific to the blind due to crossmodal plasticity or could also be observed in sighted individuals remains currently debated. The answer to this question is crucial to unravel the role of developmental vision in shaping the modality tuning of area hMT+/V5 for motion processing. Some studies have shown that auditory (Warren et al., 2002; Poirier et al., 2005; Alink et al., 2008; Strnad et al., 2013) and tactile (Hagen et al., 2002; Blake et al., 2004; Beauchamp et al., 2007; Ricciardi et al., 2007; Summers et al., 2009; van Kemenade et al., 2014) motion also involves part of hMT+/V5 in sighted individuals. Based on these findings, it was suggested that part of hMT+/V5 may act as a supramodal region for motion computation and develop independently of visual experience (Pascual-Leone and Hamilton, 2001; Ricciardi et al., 2007; Ricciardi and Pietrini, 2011). Other studies however failed to identify a crossmodal involvement of area hMT+/V5 in non-visual motion processing in the sighted (Lewis et al., 2000; Bremmer et al., 2001; Saenz et al., 2008; Bedny et al., 2010; Alink et al., 2011; Jiang et al., 2014, 2015).

Inconsistencies across studies may stem from a variety of parameters such as the sensory modality investigated (audition vs. touch), the specific features of the stimuli, and the experimental paradigm itself (e.g. block vs. event-related design). The choice of analytical steps, such as the use of univariate vs. multivariate analyses and the investigation of whole-brain vs. region-of-interest (ROI) analytic space, may also lead to different conclusions. For example, Bedny et al. (2010) found auditory motion responses in hMT+/V5 in congenitally blind but not in sighted
subjects when using a univariate approach. However, multivariate pattern analyses conducted on the same dataset revealed that auditory motion could be decoded significantly above chance level in this area in both groups (Strnad et al., 2013).

While the latter study and previous work (e.g. Blake et al., 2004; Wolbers et al., 2011; Jiang et al., 2014) focused on area hMT+/V5 as a region of interest, a whole-brain analytic approach is necessary to ascertain that auditory motion processing specifically maps in this area. The presence of auditory motion information in occipito-temporal regions outside of the typical visual-motion network would challenge the idea of a topological selectivity for auditory motion processing in the occipito-temporal cortex. Indeed, some studies suggested that response preference to auditory motion is widespread across the occipital cortex of blind individuals rather than localized in specific regions (Poirier et al., 2006; Lewald and Getzmann, 2013). Importantly, whole-brain imaging also allows investigating how the crossmodal recruitment of the occipital cortex during auditory motion processing in the early blind affects brain circuits typically dedicated to this input and function outside of the occipital cortex. Some evidence points to the presence of plastic changes within the cortices subtending the preserved non-visual modalities in early blind subjects. For instance, blind show enlarged tonotopic maps (Sterr et al., 1998a,b; Elbert et al., 2002) and enhanced voice selective activity (Gougoux et al., 2009) in temporal regions. In contrast, occipital crossmodal recruitment in the blind during auditory, haptic and even language processing can be associated with a reduced responsiveness of non-visual areas that typically support these inputs/functions (Cohen et al., 1997; Ameli et al., 2004; Collignon et al., 2009a; Stevens and Weaver, 2009; Jiang et al., 2014; Hölig et al., 2014; Bedny et al., 2015). Hence, whether intramodal plasticity in the cortices that support the preserved non-visual modalities in the early blind emerges as increases or decreases in responsiveness remains debated.

The main goals of the present study were twofold. First, we aimed at clarifying whether crossmodal responses to non-visual motion are specific to the early blind and whether these responses are confined to brain regions that typically support visual motion processing in sighted individuals. Second, we aimed at characterizing how early blindness affects the responsiveness and the connectivity of brain regions outside of the deprived “visual” cortex during auditory motion processing.

For this purpose, we investigated auditory motion selectivity in early blind and sighted subjects using both univariate and multivariate whole-brain analyses. Analyses within individually-defined regions of interest were additionally carried out in the sighted in order to further test the presence of auditory motion information in visual area hMT+/V5. We used 2 types of auditory motion trajectories, in-depth and lateral motion, since there is evidence that distinct neural populations respond to these motion trajectories both in audition (Stumpf et al., 1992; Toronchuk et al., 1992) and vision (radial and translational motion) (Saito et al., 1986; Tanaka and Saito, 1989; Morrone et al., 2000).

2. Materials and methods

2.1. Participants

Sixteen early blind and 15 sighted subjects (matched to the blind group for age, gender, handedness, educational level and musical experience) participated in this study. Blind participants were either totally blind or had only rudimentary sensitivity for brightness differences and no pattern vision. In all cases, blindness was attributed to peripheral deficits with no neurological impairment (Supplementary Table 1). All the procedures were approved by the research ethic and scientific boards of the “Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR)” and the “Quebec Bio-Imaging Network (QBIN)”. Experiments were undertaken with the consent of each participant.

Of the 31 participants recruited for the study, 4 participants in total were judged as outliers based on their target detection performance (hits — false alarms) as it was lower than the average of the subjects in the same group by more than 2 standard deviations. We decided to exclude these participants from the analyses since we could not guarantee that they understood the task and paid sufficient attention to the stimuli. Three participants (1 blind, 2 sighted) were excluded from the analyses in the auditory experiment, and two participants were excluded from the analyses in the visual experiment. A total of 28 participants were therefore included in the analyses in the auditory experiment: 15 early blind participants (5 females, range = 23 to 62 years, mean ± SD = 44.8 ± 12.6 years) and 13 sighted participants (4 females, range = 22 to 56 years, mean ± SD = 41.6 ± 10.7 years). A total of 13 sighted participants were included in the analyses in the visual experiment (4 females, range 22 to 56 years, mean ± SD = 40.6 ± 11 years).

2.2. Task and general experimental design

Participants in both groups were scanned in one auditory run of 390 brain volumes (TR = 2200 ms) and were blindfolded throughout the fMRI acquisition. Sighted participants were additionally scanned in one visual run of 410 brain volumes (TR = 2200 ms) on a separate day. In order to familiarize the participants to the fMRI environment before the fMRI acquisition, participants underwent a training session in a mock scanner. During that session participants practiced the tasks in the bore of the scanner while listening to recorded scanner sounds. In the scanner, auditory stimuli were delivered by means of circumaural, fMRI-compatible headphones (Mr Confon, Magdeburg, Germany). Visual stimuli were projected on a screen at the back of the scanner and visualized through a mirror (127 mm × 102 mm) that was mounted at a distance of approximately 12 cm from the eyes of the participants.

2.2.1. Auditory experiment

Auditory stimuli consisted of pink noise sounds from 3 different categories: (1) in-depth motion, (2) lateral motion, and (3) stationary sounds (no motion) (Fig. 1A). In line with other neuroimaging studies of auditory motion processing (Griffiths and Green, 1999; Warren et al., 2002; Saenz et al., 2008; Alink et al., 2011; Saldern and Noppeney, 2013), we used the broadband pink noise sounds (44.1 Hz sampling rate) as they match the spectrum of frequencies most commonly heard in the everyday world without referring to a specific object. Additionally, pink noise minimizes the possibility that a putative occipital response in sighted subjects is a consequence of visual imagery. Moreover, pilot experiments in the scanner revealed that pink noises provided a more vivid sensation of motion relative to pure tones. Sounds lasted either 1 s (standard) or 1.8 s (target) in duration. In the in-depth motion condition, sounds (mono) either rose or decreased exponentially in intensity (from 10% to maximal intensity and from maximal intensity to 10% intensity) creating the vivid perception of a sound moving toward or away from the listener. In the lateral motion condition, the same sounds were presented separately to the left and to the right ear (stereo) with intensity increasing in one ear while decreasing simultaneously in the other ear, creating the vivid perception of a sound moving from one ear to the other in the azimuth. All participants reported a strong sensation of motion. In the static condition, 1 s and 1.8 s pink noise sounds (mono) of constant intensity were presented. A 25 ms ascending-descending ramp was applied at the beginning/end of the static sounds. In order to ensure equal global acoustic energy across conditions despite the application of a ramp in the static condition, the static sounds were normalized based on the mean Root Mean Square (RMS) of the sounds from the motion conditions. Examples of the auditory stimuli used in the present study are provided in the Supplementary Material.

A block design was implemented in a single run consisting of 30 consecutive blocks (10 repetitions/category) separated by rest periods of 9 s. The three categories repeated consecutively with no randomization (i.e., lateral—in-depth—static). Each block included 18 consecutive auditory stimuli (no ISI) (Fig. 1A). Stimuli within the motion blocks always
alternated between the two opposite directions (approaching and receding in the in-depth condition, left-to-right and right-to-left in the lateral motion condition). The task consisted of detecting longer (1.8 s) sounds by pressing the response button with the index finger of the right hand. Subjects were asked to respond as accurately as possible. Response speed was not emphasized. Within each category, there were 4 blocks with one target (18.8 s duration), 4 blocks with 2 targets (19.6 s duration) and 2 blocks with 3 targets (20.4 s duration). The whole run contained a total of 18 targets/category.

2.2.2. Visual experiment

Visual stimuli were generated from random-dot patterns consisting of 3 different categories in analogy to the auditory experiment: (1) radial motion (approaching/receding), translational (upward/downward) motion, and (3) flicker (no motion).

2.3. Behavioral analysis

Performance in the auditory run was analyzed by submitting accuracy scores (hits minus false alarms) to a 2 (between-subjects factor group) × 3 (within-subjects factor condition) repeated measures ANOVA. In the sighted group, a repeated measures ANOVA (3 within-subjects factor condition) was performed on accuracy scores in the visual experiment. A Greenhouse–Geisser correction was applied to the degrees of freedom and significance levels whenever an assumption of sphericity was violated.

2.4. fMRI data acquisition and analyses

2.4.1. Acquisition

Functional MRI-series were acquired using a 3-T TRIO TIM system (Siemens, Erlangen, Germany), equipped with a 12-channel head coil. Multislice T2*-weighted fMRI images were obtained with a gradient echo-planar sequence using axial slice orientation (TR = 2200 ms, TE = 30 ms, FA = 90°, 35 transverse slices, 3.2 mm slice thickness, 0.8 mm inter-slice gap, FoV = 192 × 192 mm², matrix size = 64 × 64 × 35, voxel size = 3 × 3 × 3.2 mm³). Slices were sequentially acquired along the z-axis in feet-to-head direction. The 4 initial scans were discarded to allow for steady state magnetization. Participants’ head was immobilized with the use of foam pads that applied pressure onto the headphones. A structural T1-weighted 3D MP-RAGE sequence (voxel size = 1 × 1 × 1.2 mm³; matrix size = 240 × 256; TR = 2300 ms, TE = 2.91 ms, TI = 900 ms, FoV = 256; 160 slices) was also acquired for all participants.

2.4.2. Univariate analyses

Functional volumes from the auditory and the visual experiments were pre-processed and analyzed separately using SPM8 (Welcome Department of Imaging Neuroscience, London), implemented in MATLAB (MathWorks).

Pre-processing included slice timing correction of the functional time series, realignment of functional time series, co-registration of functional and anatomical data, creation of an anatomical template using DARTEL (a template including participants from both groups in the auditory experiment, and a template including sighted participants only in the visual experiment) (Ashburner, 2007), spatial normalization of anatomical and functional data to the template, and spatial smoothing (Gaussian kernel, 8 mm full-width at half-maximum, FWHM). The creation of a study-specific template using DARTEL was performed to reduce deformation errors that are more likely to arise when registering single subject images to an unusually shaped template (Ashburner, 2007). This is particularly relevant when comparing early blind and sighted subjects as previous work has demonstrated significant structural differences in early blind subjects, particularly within the occipital cortex (Noppeney et al., 2005; Pan et al., 2007; Jiang et al., 2009; Park et al., 2009).

Following pre-processing steps, the analysis of fMRI data, based on a mixed effects model, was conducted in two serial steps accounting respectively for fixed and random effects. For each subject, changes in brain regional responses were estimated through a general linear model including the responses to the 3 experimental conditions (inc-
depth motion, lateral motion and static conditions in the auditory experiment; radial, translational and flicker in the visual experiment). These regressors consisted of a boxcar function convolved with the canonical hemodynamic response function. Movement parameters derived from realignment of the functional volumes (translations in x, y and z directions and rotations around x, y and z axes) and a constant vector were also included as covariates of no interest. High-pass filtering was implemented in the design matrix using a cut-off period of 128 s to remove slow drifts from the time series. Serial correlations in fMRI signal were estimated using an autoregressive (order 1) plus white noise model and a restricted maximum likelihood (ReML) algorithm.

In the auditory experiment, linear contrasts tested the main effect of each condition ([in-depth], [lateral], [static]), the main effect of general auditory processing ([in-depth + lateral + static]), the main effect of motion processing ([in-depth + lateral > static]), the main effect of in-depth motion processing ([in-depth > lateral]), and the main effect of lateral motion processing ([lateral > in-depth]). Similarly, in the visual experiment, linear contrasts tested the main effect of each condition ([radial], [translational], [flicker]), the main effects of motion processing ([radial + translational > flicker]), the main effect of radial motion processing ([radial > translational]) and the main effect of translational processing ([translational > radial]). These linear contrasts generated statistical parametric maps ([SPM(T)]). The resulting contrast images were then further spatially smoothed (Gaussian kernel 6 mm FWHM) and entered in a second-level analysis, corresponding to a random effects model, accounting for inter-subject variance. In the auditory experiment, one-sample t-tests were run on each group separately. Analyses characterized the main effect of each condition ([in-depth], [lateral], [static]), the main effect of general auditory processing ([in-depth + lateral + static]), the main effect of motion processing ([in-depth + lateral > static]), the main effect of in-depth motion processing ([in-depth > lateral]) and the main effect of lateral motion processing ([lateral > in-depth]). Two-sample t-tests were then performed to compare these effects between groups ([sighted > blind], [blind > sighted]). In the visual experiment, one-sample t-tests were run on the sighted sample. Analyses characterized the main effect of each condition ([radial], [translational], [flicker]), the main effects of motion processing ([radial + translational > flicker]), the main effect of radial motion processing ([radial > translational]) and the main effect of translational processing ([translational > radial]).

2.4.4. Multivariate pattern analyses
Preprocessing steps were identical to the steps performed for univariate analyses, except for functional time series that were smoothed with a Gaussian kernel of 2 mm (FWHM). Multivariate pattern analyses were performed in CoSMoMVPA (http://www.cosmomvpa.org; Oosterhof et al., 2016) implemented in Matlab (Mathworks). A general linear model was implemented in SPM8 separately for the auditory and visual experiments, where each block was defined as a regressor of interest. A beta map was calculated for each block separately. The beta maps were normalized (de-meaning) at each sphere within the searchlight and used as the input for the MVPA analysis. A single multi-class linear support vector machine (SVM) classifier with a linear kernel with a fixed regularization parameter of C = 1 was trained and tested for each participant separately within each group.

In the visual experiment, a three-class classifier was trained and tested to discriminate between the 3 visual conditions (radial motion, translational motion and flickering dots). In the auditory experiment, a three-class classifier was trained and tested to discriminate between the response patterns of the 3 auditory conditions (in-depth motion, lateral motion and static sounds). A separate binary auditory classifier was trained and tested to discriminate between the response patterns of the 2 auditory motion conditions (in-depth motion vs. lateral motion). The latter aimed at detecting regions that not only distinguished sound motion versus static information but also coded for different motion planes. A “leave-one block out” cross-validation scheme was implemented for each participant. The cross-validation procedure was carried out by dividing the dataset into two sub-sets (training and testing data). The classifier was trained on all blocks minus one (n = 9) from each condition and tested on the left out blocks. To evaluate the performance of the classifier and its generalization across all the data, the previous step was repeated 10 times (N-fold cross-validation where N is equivalent to the number of blocks in each condition) where in each fold a different block was used as the testing data and the classifier was trained on the other blocks. A single classification accuracy was obtained for each subject in each voxel by averaging the obtained accuracies from each cross-validation fold. The design was purposely implemented by having the 3 conditions repeated consecutively with no randomization (i.e. lateral–in-depth–static). Each block condition was therefore 2 blocks away from the block with the same condition (–66 and –69 s between the end of a block from a given condition and the beginning of the next block from the same condition in the auditory and the visual experiment, respectively). This gives enough separation for independence between training and testing blocks of the same condition therefore avoiding inflated decoding accuracy due to temporal dependencies in fMRI time series.

Multivoxel pattern analyses were first performed in a hypothesis-free manner by scanning the entire brain for auditory-motion sensitive areas using a spherical-searchlight approach (Kriegeskorte et al., 2006). We defined a sphere of 3 voxels radius (117 voxels) that moved across the entire brain, where each voxel became the center of the searchlight sphere in turn, and multivariate patterns were analyzed locally within the searchlight sphere at each location (Kriegeskorte et al., 2006). These analyses led to classification accuracy at each voxel for each participant and the resulting whole brain accuracy maps were then further spatially smoothed (Gaussian kernel 6 mm FWHM). To perform the group level analysis in SPM8, a chance level accuracy map (33.33%...
and 50% for the multi-class and binary decoding, respectively) was subtracted from each participant’s classification accuracy map. The resulting contrast maps were then imported to SPM8 and entered in a second-level analysis, corresponding to a random effects model, accounting for inter-subject variance (Klein and Zatorre, 2014). One sample t-tests testing for above chance classification accuracy were run on each group separately in the auditory experiment, and in the sighted group only in the visual experiment. In the auditory experiment, two sample t-tests were then performed to identify group effects ([sighted \ N blind], [blind \ N sighted]).

2.4.5. Statistical inferences

The resulting set of voxel values for each contrast in the univariate, multivariate searchlight and psychophysiological interaction analyses constituted a map of the t statistic [SPM(T)] that was thresholded at \(p < 0.001 \) (uncorrected for multiple comparisons) in combination with a cluster threshold of 20 contiguous voxels, and 5 voxels in specific structures of interest (i.e. intraparietal sulci, planum temporale, hMT+/V5, V3A). Statistical inferences were performed at the voxel level using a threshold of \(p < 0.05 \) after correction for multiple comparisons (Family Wise Error method) over either the entire brain volume, or over small spherical volumes (15-mm radius) located in structures of interest reported by published work on visual motion and auditory motion/spatial processing. Coordinates (in MNI space) used for small volume correction are reported in the corresponding table legends. In the tables reporting findings from the auditory experiment (Tables 1–3), correction over small spherical volumes in bilateral hMT+/V5 and right V3A were performed on the coordinates of these areas as independently localized in vision based on the contrast [radial + translational + flicker] (see Table 4). Significant clusters were anatomically labeled using brain atlases (Petrides, 2012).

2.4.6. Regions of interest analyses

Previous studies have shown that group averaged responses for the localization of visual area hMT+/V5 can produce spurious overlapping responses to visual, tactile (Jiang et al., 2015) and auditory motion...
Results of the univariate analyses for the main effect of auditory motion processing [in-depth + lateral > static] in the blind and the sighted. Coordinates reported in this table are significant (p < 0.05 FWE) after correction over small spherical volumes (SVC) or over (mean ± SD = 90.03% ± 8.54%). However, there was a significant main effect of condition (F2,52 = 11.107; p = 0.001). Two-tailed paired-sample t-tests, collapsed across participants, indicated overall lower detection accuracy in the in-depth motion condition (mean ± SD = 86.9% ± 13.37%) compared to the lateral motion (mean ± SD = 94.25% ± 8.07%). t27 = -2.908, p = 0.007) and to the static condition (mean ± SD = 96.93% ± 6.45%; t27 = -3.905, p = 0.001). The interaction was not significant (p > 0.2).

Results

3. Results

3.1. Behavioral results

3.1.1. Auditory experiment

The main effect of group was not significant, indicating that overall target detection accuracy (hits – false alarms) did not differ between the blind (mean ± SD = 94.7% ± 4.9%) and the sighted groups (mean ± SD = 90.03% ± 8.54%). However, there was a significant main effect of condition (F2,52 = 11.107; p = 0.001). Two-tailed paired-sample t-tests, collapsed across participants, indicated overall lower detection accuracy in the in-depth motion condition (mean ± SD = 86.9% ± 13.37%) compared to the lateral motion (mean ± SD = 94.25% ± 8.07%; t27 = -2.908, p = 0.007) and to the static condition (mean ± SD = 96.93% ± 6.45%; t27 = -3.905, p = 0.001). The interaction was not significant (p > 0.2).

3.2. fMRI results – univariate analyses

In line with previous work (Pavani et al., 2002; Seifritz et al., 2002; Warren et al., 2002), sighted subjects showed auditory motion selective activity (compared to static) in a fronto-temporo-parietal network.
Table 3

Results of the three-class and binary multivariate searchlight analyses obtained in the auditory experiment in the blind and the sighted. Coordinates reported in this table are significant (p < 0.05 FWE) after correction over small spherical volumes (SVC) or over (•) the whole brain. Z and p-values are relative to chance performance (33.33% and 50% for multi-class and binary classification, respectively). For binary classification (right-hand), coordinates marginally significant are reported in italic and underlined.

Coordinates used for correction over small spherical volumes are as follows (x, y, z, in MNI space): left superior temporal gyrus [−54 −26 10] (Pavani et al., 2002); left Heschl’s gyrus [−40 −28 8] (Hart et al., 2004); right Heschl’s gyrus [52 −16 8] (Hart et al., 2004); left inferior parietal lobule [−48 −30 44] (Griffiths et al., 2000); right inferior parietal lobule [42 −50 32] (Weeks et al., 2000); left superior parietal lobule [−30 −54 64] (Pavani et al., 2002); right superior parietal lobule [26 −62 62] (Pavani et al., 2002); right intraparietal sulcus [36 −40 40] (Collignon et al., 2011); right superior frontal sulcus [32 0 48] (Collignon et al., 2011); left supplementary motor area [−2 1 52] (Lewis et al., 2000); left precuneus gyrus [−40 −68] (Pavani et al., 2002); right precuneus gyrus [46 36] (Pavani et al., 2002); left middle temporal gyrus (MT+ +V5) [−42 −64 4] (present study); right middle temporal gyrus (MT+ +V5) [42 −60 4] (present study); left inferior parietal gyrus [−20 −80 30] (Collignon et al., 2011); right superior occipital gyrus (V1A) [22 −80 28] (present study); left cuneus [0 −90 22] (Bedny et al., 2010); right precuneus [4 −58 62] (Griffiths et al., 2000). For each SVC, we only report the highest peak coordinate located within a given structure of interest in the multi-class analyses, and the corresponding coordinate in the binary class analyses. K represents the number of voxels when displayed at p(unc) < 0.001. L: left, R: right, G: gyrus, S: sulcus.

<table>
<thead>
<tr>
<th>Area</th>
<th>k</th>
<th>x (mm)</th>
<th>y (mm)</th>
<th>z (mm)</th>
<th>Z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGHTED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right sulcus of Heschl</td>
<td>3610</td>
<td>60</td>
<td>−10</td>
<td>6</td>
<td>6.25</td>
<td><0.001*</td>
</tr>
<tr>
<td>Right planum temporale</td>
<td>58</td>
<td>−26</td>
<td>8</td>
<td>5.75</td>
<td><0.001*</td>
<td></td>
</tr>
<tr>
<td>Right planum temporale</td>
<td>68</td>
<td>−20</td>
<td>4</td>
<td>5.59</td>
<td>0.001*</td>
<td></td>
</tr>
<tr>
<td>Right middle temporal G</td>
<td>48</td>
<td>−56</td>
<td>12</td>
<td>3.98</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>L. sulcus of Heschl</td>
<td>2956</td>
<td>−52</td>
<td>22</td>
<td>6</td>
<td>5.95</td>
<td><0.001*</td>
</tr>
<tr>
<td>L. planum temporale</td>
<td>−66</td>
<td>−34</td>
<td>12</td>
<td>5.95</td>
<td><0.001*</td>
<td></td>
</tr>
<tr>
<td>L. planum temporale</td>
<td>−42</td>
<td>−32</td>
<td>12</td>
<td>5.02</td>
<td>0.013*</td>
<td></td>
</tr>
<tr>
<td>L. anterior occipital S</td>
<td>123</td>
<td>−50</td>
<td>−68</td>
<td>2</td>
<td>3.81</td>
<td>0.012</td>
</tr>
<tr>
<td>L. middle temporal G</td>
<td>85</td>
<td>−48</td>
<td>−62</td>
<td>16</td>
<td>3.44</td>
<td>0.036</td>
</tr>
<tr>
<td>R. supramarginal G</td>
<td>165</td>
<td>−40</td>
<td>−34</td>
<td>40</td>
<td>3.91</td>
<td>0.009</td>
</tr>
<tr>
<td>L. inferior parietal Lobule</td>
<td>38</td>
<td>40</td>
<td>40</td>
<td>3.53</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>R. precuneus</td>
<td>335</td>
<td>2</td>
<td>−54</td>
<td>58</td>
<td>3.38</td>
<td>0.042</td>
</tr>
<tr>
<td>R. middle/superior occipital G</td>
<td>232</td>
<td>8</td>
<td>−54</td>
<td>32</td>
<td>3.41</td>
<td>0.035</td>
</tr>
<tr>
<td>L. cuneus</td>
<td>199</td>
<td>6</td>
<td>−94</td>
<td>24</td>
<td>3.73</td>
<td>0.014</td>
</tr>
<tr>
<td>L. precuneal G</td>
<td>308</td>
<td>−42</td>
<td>−6</td>
<td>50</td>
<td>3.71</td>
<td>0.016</td>
</tr>
<tr>
<td>Right precuneal G</td>
<td>128</td>
<td>56</td>
<td>0</td>
<td>44</td>
<td>3.87</td>
<td>0.001 (5024)</td>
</tr>
<tr>
<td>Right precuneal G</td>
<td>58</td>
<td>10</td>
<td>32</td>
<td>3.42</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>R. superior precuneal S</td>
<td>20</td>
<td>28</td>
<td>−6</td>
<td>52</td>
<td>3.44</td>
<td>0.035</td>
</tr>
<tr>
<td>L. supplementary motor area</td>
<td>85</td>
<td>0</td>
<td>2</td>
<td>38</td>
<td>3.81</td>
<td>0.012</td>
</tr>
<tr>
<td>L. superior parietal lobule</td>
<td>423</td>
<td>−28</td>
<td>−54</td>
<td>50</td>
<td>3.75</td>
<td>0.014</td>
</tr>
<tr>
<td>L. inferior parietal lobule</td>
<td>84</td>
<td>−32</td>
<td>−36</td>
<td>50</td>
<td>3.71</td>
<td>0.016</td>
</tr>
<tr>
<td>L. superior occipital G</td>
<td>50</td>
<td>−30</td>
<td>90</td>
<td>26</td>
<td>3.71</td>
<td>0.016</td>
</tr>
<tr>
<td>R. postcentral G</td>
<td>560</td>
<td>−26</td>
<td>−48</td>
<td>60</td>
<td>4.27</td>
<td>0.002</td>
</tr>
<tr>
<td>R. superior parietal lobule</td>
<td>18</td>
<td>−62</td>
<td>−62</td>
<td>4</td>
<td>4.18</td>
<td>0.003</td>
</tr>
</tbody>
</table>

BLIND						
Right middle temporal G	4371	46	−58	10	5.76	<0.001*
Right middle temporal G	50	−48	10	5.44	0.002*	
Right planum temporale	54	−38	141	4.73	0.034	
Right sulcus of Heschl	56	−12	4	3.90	0.009	
L. anterior occipital S	2578	−52	62	4	4.91	0.021
L. middle temporal G	84	−64	16	4.73	0.043	
L. sulcus of Heschl/PT	66	36	14	4.41	0.001	
L. sulcus of Heschl	32	−30	12	3.86	0.01	
R. precuneus	3977	12	−50	62	4.81	0.033*
L. precuneus	−6	−46	58	4.64	0.04*	
R. inferior parietal lobule	32	−40	54	4.30	0.01	
R. superior parietal lobule	24	−48	60	4.30	0.002	
L.PS/superior parietal lobule	−38	−48	44	3.86	0.01	
R. superior occipital G	301	22	−84	40	3.83	0.011
L. cuneus	−2	12	40	24	3.40	0.039
L. superior occipital G	135	−20	−80	32	4.09	0.005
L. superior occipital G	32	−40	54	4.30	0.002	
R. precuneal G	177	2	24	50	3.93	0.008
L. precuneal G	94	−42	−4	50	3.81	0.012

SIGHTED > BLIND						
Right planum temporale	70	62	−10	6	3.79	0.013
L. sulcus of Heschl	49	−52	22	6	3.52	0.028
L. supramarginal gyrus	−58	−22	14	3.37	0.043	

| BLIND > SIGHTED | | | | | | |
| Right middle temporal gyrus | 21 | 40 | −60 | 6 | 3.37 | 0.043 |

Subtending the intraparietal sulci, the superior frontal/precuneal gyri, the planum temporale bilaterally, and a large cluster encompassing the inferior and middle frontal gyrus in the right hemisphere (Figs. 2A, 3A, Table 1). In the blind group, auditory motion selective responses were also observed in the right planum temporale, and to a smaller extent, in the right precuneal gyrus and bilateral intraparietal sulci. In this...
group, responses were additionally observed in the left Rolandic operculum and in the right superior occipital gyrus. The strongest selectivity (resisting whole brain correction) was observed in a cluster located in the right posterior middle temporal gyrus (Figs. 2A, 3A, Table 1).

A two-sample t-test [blind > sighted] performed on the contrast of motion processing [in-depth + lateral > static] revealed bilateral activations with a right hemisphere dominance (Fig. 2A, Table 1, see also Supplementary Fig. 2). Activations were observed in the right posterior middle temporal gyrus extending into the right middle occipital gyrus, in the left middle occipital gyrus and in the superior occipital gyrus bilaterally (Fig. 2, Table 1). Importantly, only two clusters within these regions were significantly activated in the blind: the right posterior middle temporal gyrus and the right superior occipital gyrus. Significant differences between the clusters observed in the left hemisphere were thus mainly driven by significant deactivation in the sighted. The right posterior middle temporal gyrus (MNI coordinates [48 – 62 4]) and the right superior occipital gyrus (MNI coordinates [26 – 86 32]) selective for auditory motion in the blind group overlapped with visual areas hMT+/V5 and V3A localized in the sighted group in vision by means of the contrast [radial + translational > flicker] (MNI coordinates [42 – 60 4] and [22 – 80 28], respectively, outlined in black in Fig. 2A, Table 4). No significant responses to auditory motion were observed in the sighted group in functionally-defined hMT+/V5 (or elsewhere in the occipito-temporal “visual” cortex) even at a more lenient threshold of p < 0.01 uncorrected.

We further explored selective reorganization for specific types of auditory motion ([in-depth > lateral], [lateral > in-depth]). These results are presented in Supplementary material (Supplementary Fig. 3 and Supplementary Table 3).

3.3. fMRI results — functional connectivity analyses

We ran psychophysiological interactions (PPI) analyses (Gitelman et al., 2003) in order to further investigate the impact of early visual deprivation on the brain network supporting auditory motion processing. These analyses targeted the right planum temporale as the seed area for two reasons. First, the right planum temporale has been consistently identified as a crucial region for supporting auditory motion processing in the present and in previous studies (Pavani et al., 2002; Seifritz et al., 2002; Warren et al., 2002). Second, as this area was commonly responsive to moving relative to static sounds in both groups of participants in the present study (Fig. 2A, white circled), connectivity analyses performed using this region as a seed cannot be biased in favor of one or the other group.

In the sighted group, the right planum temporale showed increased task-related connectivity with the left Rolandic operculum, the medial superior frontal gyr (supplementary motor area), the bilateral precentral gyri, and right middle and inferior frontal gyri (Table 2). In the blind group, the right planum temporale showed increased task-related connectivity with the right posterior middle temporal gyrus, the bilateral cuneus, and the right precentral gyrus (Table 2). Between group comparisons indicated that the right planum temporale showed increased task-related connectivity in the blind (compared to the sighted group) with the right posterior middle temporal gyrus and the right cuneus/superior occipital gyrus (identified in the univariate analyses, see Fig. 2B, Table 2). In contrast, the same area showed increased task-related connectivity in the sighted (compared to the blind group) in a fronto-parietal network including the right intraparietal sulcus, the left inferior parietal lobule, and the right superior frontal sulcus. As illustrated by the beta parameter estimates in Fig. 2B, all of these regions showed opposite effects of functional connectivity between the two groups.

3.4. fMRI results — searchlight multivariate pattern analyses

3.4.1. Auditory experiment

Multi-class whole brain searchlight analyses allowed the identification of brain regions that successfully classified the three auditory conditions above chance level (33.33%) in the sighted and the blind (Figs. 3B and 4A, Table 3).

In both groups, significant decoding accuracy was observed in large portions of the auditory cortex bilaterally, including the planum temporale and the lateral part of Heschl’s gyrus (primary/secondary auditory cortex). These clusters extended posteriorly across the middle temporal gyri toward the superior temporal sulci bilaterally. Significant classification was also observed in the cuneus and precuneus, in bilateral superior occipital gyri, in bilateral intraparietal sulci extending to the superior parietal lobules, in the right inferior parietal lobule, in bilateral precentral gyri and in the right superior precentral sulcus.

Decoding accuracy resisting whole brain correction was confined to the bilateral auditory cortices (encompassing Heschl’s gyrus bilaterally) in the sighted group, and to bilateral posterior middle temporal gyri, bilateral precuneus and right planum temporale in the blind (Figs. 3B, 4A, Table 3).

In both groups, although to a lesser extent in the sighted, posterior clusters partially overlapped with regions of the occipito-temporal cortex that successfully decoded the 3 visual conditions in the sighted (Fig. 3B). Two sample t-tests were performed in order to compare these effects between groups. In line with the whole brain univariate analyses (Fig. 2A), a cluster located in the right posterior middle temporal gyrus showed higher multi-class decoding accuracy in the blind relative to the sighted group (MNI coordinates [40 – 60 6], Fig. 4A, Table 3). The reverse comparison revealed two clusters in bilateral planum temporale extending to the supramarginal gyrus in the left hemisphere, that showed higher classification accuracy in the sighted relative to the blind group (Fig. 4A, Table 3).

Follow up searchlight analyses using a binary classifier (in-depth vs. lateral motion) provided similar findings (compare Fig. 4A and B; see Table 3), thus indicating that the regions identified in the multi-class analyses not only distinguish dynamic vs. static information but further contain information about different auditory motion planes.

3.4.2. Visual experiment

In the visual experiment, the whole brain searchlight analyses identified a large portion of the left middle occipital gyrus (including hMT+/V5) and a cluster in the right middle temporal gyrus (hMT+/V5) that successfully decoded the three visual conditions above chance level (one-sample t-test) (see orange color in Fig. 3B, Table 4).

3.5. Regions of interest analyses in individually localized hMT+/V5 in sighted subjects

To further investigate the presence of auditory motion information in area hMT+/V5 of the sighted, we conducted additional analyses in this area. hMT+/V5 regions of interest were defined both at the

Table 4

Results of the univariate analyses and three-class multivariate analyses obtained in the visual experiment in the sighted. Coordinates reported in this table are significant (p < 0.05 FWE) after correction for other small spherical volumes (SVC) or over (>) the whole brain. Coordinates used for correction over small spherical volumes are as follows (x, y, z, in MNI space): left hMT+/V5 (−<42−68−2) (Sunart et al., 1999); right hMT−V5 (42−64 4) (Sunart et al., 1999); right superior occipital gyrus (24−80 26) (Sunart et al., 1999).

<table>
<thead>
<tr>
<th>Area</th>
<th>k</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>[RADIAL + TRANSLATIONAL > Flicker]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R middle temporal G (hMT+/V5)</td>
<td>351</td>
<td>42</td>
<td>−60</td>
<td>4</td>
<td>5.51</td>
<td>0.001*</td>
</tr>
<tr>
<td>L middle temporal G (hMT+/V5)</td>
<td>49</td>
<td>−34</td>
<td>−66</td>
<td>4</td>
<td>3.73</td>
<td>0.021</td>
</tr>
<tr>
<td>R superior occipital G (V3A)</td>
<td>15</td>
<td>22</td>
<td>−80</td>
<td>28</td>
<td>3.24</td>
<td>0.029</td>
</tr>
<tr>
<td>MULTIVARIATE DECODING OF THE 3 VISUAL CONDITIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L middle occipital G (hMT+/V5)</td>
<td>797</td>
<td>−44</td>
<td>−74</td>
<td>4</td>
<td>4.22</td>
<td>0.01</td>
</tr>
<tr>
<td>R middle temporal G (hMT+/V5)</td>
<td>171</td>
<td>44</td>
<td>−62</td>
<td>6</td>
<td>3.67</td>
<td>0.049</td>
</tr>
</tbody>
</table>
group and at the individual level based on the univariate contrast \([\text{radial + translational} \rightarrow \text{static}]\) in the visual experiment. These analyses were conducted in 12 sighted subjects for whom data was analyzed in both the auditory and the visual experiments (see Section 2.1). Right hMT+/V5 was identified in all 12 subjects, and left hMT+/V5 was identified in 11 out of 12 subjects. One subject for whom left hMT+/V5 could not be identified was removed from single coordinate analyses for left hMT+/V5.

Regarding univariate analyses, beta parameter estimates in these regions of interest were extracted for the 3 auditory and the 3 visual conditions. As expected, considering that location of visual area hMT+/V5 varies widely across individuals (Dumoulin et al., 2000; Huk et al., 2002), extracting visual responses within individually localized hMT+/V5 areas markedly increased the strength of the visual responses (Fig. 5A). In contrast, auditory responses were absent in these areas, whether these responses were extracted from group-averaged or individual coordinates of left and right hMT+/V5 (Fig. 5A). Thus, whether using group-averaged or individually localized hMT+/V5, univariate analyses indicate no evidence of auditory responses in this area in the sighted.

Multivariate pattern analyses in the auditory experiment were computed within left and right hMT+/V5 using both group-level and individual level coordinates. In these 4 ROIs, we tested the accuracy of classification of the 3 auditory conditions (multi-class decoding) and of the 2 auditory motion conditions only (binary decoding). The 3 auditory conditions were classified significantly above chance level only in individually-defined left \((t_{10} = 2.35, p = 0.02)\) and right

Fig. 3. Results of the whole brain univariate and multivariate analyses in the auditory (blue) and the visual (orange) experiments. (A) Auditory activations resulting from the contrast \([\text{in-depth} + \text{lateral} \rightarrow \text{static}]\) in the sighted and the blind and visual activations resulting from the contrast \([\text{radial} + \text{translational} \rightarrow \text{flicker}]\) in the sighted \((p_{\text{uncorr}} < 0.001, k > 20)\). The overlap between auditory and visual responses is depicted in yellow. (B) Regions showing above chance level \((33.33\%)\) decoding of the 3 auditory conditions (in-depth motion, lateral motion, static) in the sighted and the blind and of the 3 visual conditions (radial motion, translational motion, flicker) in the sighted \((p_{\text{uncorr}} < 0.001, k > 20)\). The overlap between auditory and visual decoding is depicted in yellow. L = left hemisphere, R = right hemisphere. See Tables 1, 3 and 4 for a list of brain regions depicted in this figure.
hMT+/V5 (t_{11} = 3.1, p = 0.005) while decoding accuracy did not differ from chance in group-defined ROIs (p’s > 0.1). Above chance decoding accuracy resisted Bonferroni correction only in right individually-defined hMT+/V5 (Fig. 5B). There was a significant effect of coordinate (F_{1, 10} = 9, p = 0.013), indicating that multi-class decoding accuracy was overall higher when using individually-defined coordinates of
hMT+/V5 (mean ± SD collapsed across hemispheres = 44.9 ± 13.75) than group level coordinate of this area (mean ± SD collapsed across hemispheres = 35.27 ± 8.67). No other main effect of interaction were significant (p > 0.4).

Binary classification of the 2 auditory motion conditions was significantly above chance level in both hemispheres when using individually-defined coordinates of hMT+/V5 (left hMT+/V5: t10 = 2.73, p = 0.01; right hMT+/V5: t11 = 2.75, p = 0.01), while it was only significant in the left hemisphere when using group-defined coordinates of this area (left hMT+/V5: t1 = 3.58, p = 0.002; right hMT+/V5: p = 0.09). There was no effect of coordinate (p > 0.2) or hemisphere (p > 0.3) on binary classification accuracy, and no interaction between these 2 factors (p > 0.15).

4. Discussion

The present study is the first to directly compare whole-brain uni- and multi-variate analyses using carefully controlled auditory motion stimuli in a rather large group of early blind individuals (n = 15).

4.1. Functional specialization for auditory motion processing in right hMT+/V5 and V3A of early blind subjects

In line with several studies investigating crossmodal reorganization associated with blindness, univariate analyses revealed substantial activity in the occipital cortex of the blind in response to general sound processing (Supplementary Fig. 1, Supplementary Table 2). A subset of these regions, more specifically the posterior middle temporal gyrus and superior occipital gyrus in the right hemisphere showed a preference for moving over static sounds selectively in the blind group (Fig. 2A). These regions overlapped with right hMT+/V5 and V3A (Watson et al., 1993; Tootell et al., 1995) localized visually in the sighted (Fig. 2A). In contrast to previous work (Poirier et al., 2006; Lewald and Getzmann, 2013), the findings in the present study revealed that auditory motion selectivity was confined to these right occipito-temporal regions. Our results therefore demonstrate that in the absence of visual input since birth, the right hMT+/V5 and V3A maintain their functional specialization toward the processing of dynamic information while redirecting their modality tuning toward sounds. These findings are consistent with the observation that nearby regions of the right dorsal stream preferentially respond to the spatial attributes of sounds in congenitally blind compared to sighted (Collignon et al., 2007, 2011) or late-blind individuals (Collignon et al., 2013). Together with the aforementioned studies and in line with the idea that visuo-spatial processing occurs predominantly in the right hemisphere in sighted individuals (Corbetta and Shulman, 2002), the present study supports a strong right hemispheric lateralization for auditory spatial processing in early blind subjects (Weeks et al., 2000; Collignon et al., 2011).

The findings of our study contrast with previous work suggesting that sounds with high motion content relative to sounds with low motion content are enhanced in blind subjects only in the left hMT+/V5 (Bedny et al., 2010). In the present study, despite higher auditory-driven activity in left middle occipital gyrus in the blind compared to the sighted group (Supplementary Fig. 1), only the right hMT+/V5 displayed significant auditory motion selective responses that were specific to the blind group (Fig. 2A, Supplementary Fig. 2). This apparent conflicting finding might be due to the different stimuli used in these studies. For instance, the high and low motion content stimuli in the study of Bedny et al. (2010) differed in terms of low-level properties and perceptual salience. Thus, any difference observed between conditions might be putatively associated with differences in the physical attributes of the sounds or in the level of arousal they generate, rather than to differences in motion content itself. In line with this assumption, it was recently shown that in congenitally blind humans hMT+/V5 displays a tonotopic mapping in response to pure tones of varying frequencies, suggesting that this region might be sensitive to early aspects of auditory processing in this population (Watkins et al., 2013). Using a whole-brain approach and moving vs. static stimuli differing solely in their motion content, the present study suggests that the selective increase in response to moving sounds in early blind subjects is specific to the right hMT+/V5 and V3A.

4.2. Crossmodal reorganization as a large-scale imbalance between sensory systems

Whole-brain searchlight MVPA analyses revealed an extended network of brain regions containing information about the 3 auditory conditions in both groups of subjects (Fig. 3B). These regions included the planum temporale and the posterior middle temporal gyrus in the vicinity of hMT+/V5 in both groups. Results of the binary decoding were highly similar to the ones of the three-class decoding (Fig. 4A and B), thus demonstrating that these regions do not merely distinguish motion vs. static information but further contain information about different auditory motion planes.

Supporting the findings from the univariate analyses, the right posterior middle temporal gyrus (overlapping with the univariate definition of hMT+/V5) showed enhanced decoding accuracy in the blind relative to the sighted group (Fig. 4A). Importantly, classification accuracy in the planum temporale bilaterally was significantly higher in the sighted than in the blind group (Fig. 4A). Between-group comparisons using binary decoding (in-depth vs. lateral motion) confirmed these findings although with more marginal effects for the right posterior middle temporal gyrus (blind > sighted) and the left planum temporale (sighted > blind) (see Fig. 4B).

Reduced univariate activity in the auditory cortices was previously reported in early blind subjects during passive listening of sounds compared to silence (Gougoux et al., 2009; Stevens and Weaver, 2009; Watkins et al., 2013). A recent study using multivariate pattern analyses in regions of interest showed that the direction of moving sounds was accurately classified within the right planum temporale but not within hMT+/V5 in sighted subjects, whereas the reverse pattern was found in early blind subjects (Jiang et al., 2014). Likewise, in the present study, classification in the sighted compared to the blind was significantly higher in auditory regions and significantly reduced in right hMT+/V5. In contrast to findings reported by Jiang et al. (2014) however, we found reliable classification of motion-related information in both the planum temporale and hMT+/V5 in both early blind and sighted subjects. These findings suggest that following early visual deprivation, at least a portion of the computational resources dedicated to auditory motion processing and typically located in the planum temporale is redirected to the deafferented “visual” cortex. In other words, brain reorganization following early visual deprivation appears to be characterized by a large-scale reallocation of computational resources that are typically supported by the auditory cortex. This
assumption is supported by previous TMS studies conducted in sighted and early blind individuals. For example, TMS applied over the right intraparietal sulcus disrupted spatial localization performance only in sighted subjects (Collignon et al., 2009a). Similarly, TMS applied over the sensorimotor cortex during a tactile discrimination task strongly impaired performance in sighted subjects whereas impairment was only minor in early blind subjects (Cohen et al., 1997). Likewise, TMS applied over the prefrontal cortex during verb generation significantly increased the number of errors produced only in sighted subjects (Amedi et al., 2004). In the aforementioned studies, TMS applied over the occipital cortex systematically impaired behavioral performance in early blind subjects. Evidence from neuroimaging studies exists to demonstrate that in early blindness, such a large scale sharing of resources could be supported by strengthened cortico-cortical connections between temporal and occipital areas (Klinge et al., 2010; Collignon et al., 2013).

We conducted functional connectivity analyses targeting the right planum temporale in order to empirically test the prediction of a large-scale imbalance in the brain network supporting auditory motion processing in early blind subjects. Early blind subjects, when compared to sighted controls, showed enhanced integration between the right planum temporale and the right occipito-temporal regions and a concomitant reduced connectivity with parietal and frontal regions (Fig. 2B). These results compellingly support our suggestion that early sensory deprivation affects the balance existing between cortical areas that are part of a network that supports a given cognitive function. Early sensory deprivation appears to alter this balance by increasing the contribution of the sensory-deprived areas and decreasing the contribution of non-deprived regions that are typically involved in the same function in normally sighted subjects (Collignon et al., 2009a).

These findings raise an important question pertaining to the specific computational steps that occur in hMT+/V5 and the planum temporale during auditory motion processing in the blind. Since the duplication of computational processes between these regions would be inefficient, we speculate that these regions support distinct computational mechanisms in auditory motion processing. Understanding how developmental vision influences this reorganization is a major challenge for further research.

4.3. Decoding auditory motion content within bilateral hMT+/V5 in early blind and sighted individuals

Whole-brain searchlight MVPA analyses showed some overlap between auditory and visual decoding in occipito-temporal regions in the vicinity of hMT+/V5 even in the sighted group (Fig. 3B). Further region of interest analyses targeting visual area hMT+/V5 in the sighted revealed that this overlap of auditory and visual decoding was not simply due to group averaging (Saenz et al., 2008; Jiang et al., 2015). In fact, in individually-defined area hMT+/V5, decoding accuracy was significant...
in the right hemisphere both using multi-class and binary decoding, and significant in the left hemisphere using binary decoding (Fig. 5B).

In the case of multi-class decoding, accuracy was overall higher in individually-defined coordinates than in group-defined coordinates (see Fig. 5B), suggesting that auditory motion information could be more highly decoded within individually defined hMT+/V5 than rather than in neighboring areas (i.e. using group-level coordinate). The finding that binary classification accuracy was above chance level in individually-defined hMT+/V5 of the sighted further demonstrates that this area not only distinguishes between motion vs. static information but further contains information about different auditory motion planes.

These findings are in line with previous work suggesting that non-visual motion information is present to some extent in hMT+/V5 of subjects with typical visual experience (Hagen et al., 2002; Warren et al., 2002; Blake et al., 2004; Poirier et al., 2005; Ricciardi et al., 2007; Alink et al., 2008; Strnad et al., 2013; van Kemenade et al., 2014).

The presence of auditory motion information in areas that do not show differential activation levels in response to moving sounds reconcile previous work that used a univariate approach and failed to reveal auditory motion related responses in hMT+/V5 in sighted subjects (Lewis et al., 2000; Bremmer et al., 2001; Saenz et al., 2008; Bedny et al., 2010). This does not imply that the use of MVPA systematically provides positive findings for the presence of auditory motion information in hMT+/V5. For instance, two studies failed to reveal directional selectivity to laterally moving sounds in this area in sighted subjects (Alink et al., 2011; Jiang et al., 2014). While this might seem at odds with the present findings, it is possible that activity patterns elicited in hMT+/V5 by sounds moving laterally vs. frontally in the azimuth (present study) differ to a larger extent from activity patterns elicited by sounds moving laterally to the right vs. to the left (Alink et al., 2011; Jiang et al., 2014). In other words, different categories of sound trajectories (e.g. lateral vs. in-depth motion) might be more reliably decoded than specific sub-categorical (e.g. left vs. right) auditory motion information in hMT+/V5 of the sighted.

In line with our findings, Bedny et al. (2010) also reported no responses to auditory motion in hMT+/V5 in sighted subjects when using a univariate approach, while multivariate pattern analyses conducted on the same data set revealed that high vs. low motion content could be decoded in this area in sighted subjects (Strnad et al., 2013). Importantly, in contrast to Strnad et al. (2013) who focused their analyses on hMT+/V5, the whole brain approach adopted in the present study allows us to demonstrate that the effects observed in the sighted “visual cortex” are specific to occipito-temporal regions in the vicinity of hMT+/V5 (Fig. 3B).

Different theoretical accounts could explain the presence of non-visual motion information in a region that strongly responds to visual motion in the sighted. According to the metamodal/supramodal theory of the brain (Pascual-Leone and Hamilton, 2001; Ricciardi and Pietrini, 2011; Reich et al., 2012; Ricciardi et al., 2014), parts of hMT+/V5 may act as a supramodal processor for motion, performing motion computations independently of the modality over which it operates and developing independently of any visual experience (Ricciardi and Pietrini, 2011; Ricciardi et al., 2014). In other words, computing motion information may become abstracted from the input and from sensory experience. Our results do not fully support such a pure metamodal/supramodal assumption. First, univariate analyses showed strong visual motion selectivity in bilateral hMT+/V5 (Figs. 3A and 5A) but no response (or else a response suppression) to auditory motion in this area in the sighted (Figs. 2A, 3A and 5A). Second, visual experience strongly impacted on the response profile of this area, more specifically in the right hemisphere. Indeed, only the blind group showed functionally specific activity in response to auditory motion in right hMT+/V5 (Fig. 2A, Supplementary Fig. 2), and decoding accuracy for the different auditory conditions (multi-class and binary) in this region was higher in the blind than in the sighted group (Fig. 4A and B). Third, functional connectivity between hMT+/V5 and planum temporale was enhanced in early blind compared to sighted subjects (Fig. 2B), suggesting that visual experience influences this region at the network level. Altogether our findings demonstrate that hMT+/V5 responds differentially to auditory and visual motion in sighted subjects and that a lack of visual experience impacts on the response properties and on the connectivity profile of this area. Based on these observations, we suggest that, at least in the context of our experiment, hMT+/V5 does not meet all the criteria to qualify as a ‘pure’ supramodal region as defined above. However, our results do not reject the idea that at least some sub-parts of hMT+/V5 (e.g. anterior regions, see Beauchamp et al., 2007; Ricciardi et al., 2007) may present some multimodal or multisensory properties. Indeed, this region shows some overlap in decoding motion across modalities (vision and audition) and populations (sighted and blind) (Fig. 3B). This is even more apparent within individually defined hMT+/V5 in the sighted (Fig. 5B).

What might be the computational role of auditory motion information located in hMT+/V5 in the sighted? One possibility is that auditory and visual motion representations are integrated in this region. This would be consistent with the finding that area hMT+/V5 integrates dynamic information provided by different sensory modalities (Alink et al., 2008; Saldern and Noppeney, 2013) and that it responds indirectly to auditory moving sounds when congruently paired to a visual dynamic stimulus (Alink et al., 2008). It is also in accordance with psychophysiological observations that moving sounds lead to the perception of a simultaneously presented visual pattern as moving in the same direction (Jain et al., 2008; Schouten et al., 2011). The presence of auditory motion information in bilateral hMT+/V5 provides further support for the idea that crossmodal reorganization in early blind subjects may build on pre-existing intermodal connections between the auditory and the “visual” cortices in sighted subjects (Klinge et al., 2010; Collignon et al., 2013). Together with the observation that hMT+/V5 maintains its functional preference for dynamic information in case of early visual deprivation, the presence of auditory motion information in area hMT+/V5 of the sighted illustrates that crossmodal plasticity in early blindness may be constrained by innate patterns of brain architecture and connectivity (Collignon et al., 2009b; Mahon and Caramazza, 2011; Reich et al., 2012).

An alternative interpretation accounting for the presence of auditory motion information in area hMT+/V5 in sighted individuals is mental visual imagery (Goebel et al., 1998; Emmerling et al., 2015). For instance, it could be argued that hMT+/V5 supports auditory motion processing per se in early blind whereas it could subtend visual mental imagery in the sighted. While no study to date can conclusively rule it out, the reliance on visual imagery is unlikely to account for the pattern of results observed in the sighted in the present study. First, we specifically selected auditory stimuli that elicit low imagery content (noise). Second, mental visual imagery of motion was previously shown to increase overall response in hMT+/V5 (Goebel et al., 1998; Emmerling et al., 2015), while no such difference in activation levels was found in the sighted group in the univariate analyses.

4.4. Limitations and perspectives

Inconsistencies between studies regarding non-visual motion responses in hMT+/V5 in the sighted (see Section 1) may stem from a variety of parameters. In addition to the choice of analytical steps (univariate, multivariate, whole brain or regions of interest) that we have addressed in the present study, other important parameters concern the sensory modality investigated (audition vs. touch), the specific features of the stimuli (e.g. interaural level or time differences for moving sounds) and the implemented experimental paradigm (e.g. block vs. event-related design).

A major difference between the present study and previous investigations is the use of auditory stimuli instead of tactile ones (e.g. Ricciardi et al., 2007; Beauchamp et al., 2007; Jiang et al., 2015). As stimuli conveyed by different sensory organs also possess specific psychophysical
characteristics, it is likely that the involvement of hMT+/V5 for non-visual motion processing depends on the input modality (auditory vs. tactile). Although some work has been carried out on the topic (e.g. Bremmer et al., 2001), a direct comparison of auditory and tactile motion processing using carefully controlled stimuli represents an interesting avenue for future studies.

To characterize the nature of hMT+/V5 involvement in non-visual motion processing, one should go beyond reporting overlapping activations or decoding accuracy between modalities or populations. Given the resolution of fMRI, overlapping functional activations elicited by distinct sensory modalities may reflect the recruitment of supramodal neurons, or the recruitment of different unimodal neuronal populations (Ricciardi and Piaetini, 2011). In order to potentially localize those cortical regions that functionally contribute to a supramodal representation, multivariate analysis can be used to classify neural responses across sensory modalities and experimental samples (e.g., blind and sighted). Our design does not allow such investigation due to the lack of pure correspondence between the stimuli used in the auditory and visual modalities (i.e. vertically moving patterns versus laterally moving sounds; see Section 2.2.2 for arguments supporting the use of different motion planes across modalities). Aside from cross-modal (auditory–visual) decoding in the sighted, cross-group decoding represents an additional challenge since the multivariate representational space of a specific stimulus varies dramatically across participants. Therefore, to achieve reliable cross-subject (and therefore cross-groups) decoding, it is important to rely on specific methods to align participants in a similar functional space (Haxby et al., 2011).

Our paradigm prevents the decoding of different motion trajectories within the same plane (i.e. left vs. right, looming vs. receding moving sounds). The latter would have necessitated the use of an event-related design or a block design presenting different motion trajectories in separate blocks (e.g. Alink et al., 2011). The block design used in the present study aimed at minimizing adaptation effects related to the presentation of a stimulus in the same direction, thus increasing statistical power and maximizing the possibility to detect auditory motion information even in the visual cortex of sighted subjects. Moreover, this paradigm allowed us to investigate preferential tuning for separate motion planes as previously reported in vision (e.g. Morrone et al., 2000). Some studies have attempted to characterize the functional properties of hMT+/V5 in the early blind by decoding different motion trajectories in this area and have provided interesting positive findings (Wolbers et al., 2011, Ji et al., 2014). These types of studies combined with a cross-modal and cross-subject decoding approach have the promise to reveal important insights about the nature of the auditory motion information content rooted in classically considered ‘visual’ regions in both sighted and early blind individuals.

4.5. Conclusions

Using a combination of univariate and multivariate pattern analyses at the whole brain level, the present study demonstrates that developmental vision shapes brain areas supporting the computation of auditory and visual motion. We show that auditory motion selectivity in the reorganized occipital cortex of the blind is confined to right occipito-temporal regions, overlapping with regions that are selective to visual motion in the sighted. These results support and extend the view that in the absence of vision since birth, hMT+/V5 maintains its functional preference for computing motion information while reorienting its modality tuning toward the preserved non-visual modalities (see Bedny et al., 2010; Collignon et al., 2011; Reich et al., 2011 for similar findings of a maintenance of functional selectivity in the blind). The more subtle presence of auditory-motion related information found in area hMT+/V5 of the sighted supports the idea that crossmodal reorganization in case of early visual deprivation may build on pre-existing connections between the auditory and the visual cortex in sighted individuals. Crucially, utilizing multivariate decoding of different sound motion conditions we demonstrate that this crossmodal reorganization triggers a large-scale imbalance between auditory and “visual” brain regions typically supporting the processing of motion information, by increasing the reliance on “visual” areas and decreasing the reliance on auditory areas.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the Canada Research Chair Program (FL), the Canadian Institutes of Health Research (FL), the Belgian National Fund for Scientific Research (GB) and a European Research Council starting grant (MADVIS grant #337572) attributed to OC.

Appendix A. Supplementary material

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.neuroimage.2016.04.027.

References
