


Figure 3: Time-frequency analyses: response exemplars of functional contacts of interest (fCOIs) during the auditory, visual and audio-visual
condition expressed as baseline corrected z-scores in the relative fCOI. In the last column t-scores representations of the relevant statistics with solid
black lines representing significant responses. MRI images with superimposed CBCT scan show the localization of the fCOIs (top figure: Heschl’s
gyrus; bottom figure: calcarine scissure).

Figure 4: Time-frequency analyses: response exemplars of functional contacts of interest (fCOIs) located in the early visual cortex showing evidence
of significant high-γ power modulations during the cross-modal input and with no significant modulations during the intramodal stimulation in the
same frequency band. Power modulations are represented as t-scores of the relevant statistics. Solid black lines represent significant responses.
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sented power modulations mainly in the low-frequency bands (θ
and β bands in the auditory cortex and mainly the α band for the
visual cortex), suggesting that feedback cortico-cortical mecha-
nisms might govern MSI in early sensory cortices (Bastos et al.,
2015, Fontolan et al., 2014, Van Kerkoerle et al., 2014).

Previous studies, using intracranial electrophysiological
recordings in humans, showed that crossmodal inputs can in-
duce pure phase reset of the low frequency oscillatory activity
in the visual (Mercier et al., 2013) and auditory (Mercier et al.,
2015) cortices. Such pure phase resetting suggests that ectopic
inputs can induce a reset of the phase of the intracranial signal
without modulation of the power activity (Lakatos et al., 2007).
Differently from these studies, we found that crossmodal inputs
induce low-frequency power modulations in both sensory cor-
tices (θ band in the auditory cortex and α band in the visual
cortex). Such inconsistencies should be carefully investigated
in future studies in the light of the possible different statistical
properties of the phase and power of the oscillatory activity in
the time-frequency domain (Ding and Simon, 2013).

Another important result of our study is the presence in the
early visual cortex of power modulation in the high-γ band by
sounds (see fig.4 ). High-γ activity is considered a marker of
synaptic and spiking activity (Manning et al., 2009, Buzsáki
and Wang, 2012). Remarkably, all these visual fCOIs show-
ing increase in high-γ activity by sounds did not present high-γ
band power modulations during intramodal/visual processing,
which was evident only in the low-frequency bands. These ob-
servations suggest: 1) the presence of auditory responsive neu-
ronal populations in early visual areas and that 2) the visual and
auditory responses of these neuronal populations are not in spa-
tial register with each other since our sounds and visual stimuli
were originating from the same position in external space. This
possibility is supported by the notion that monosynaptic con-
nections from the early auditory cortex project mainly to the
peripheral visual fields (Falchier et al., 2002, Hall and Lomber,
2008) where our visual-only stimuli, presented in foveal posi-
tion, did not elicit any apparent neuronal activity. Alternatively,
this observation might suggest the presence of auditory only
responsive neuronal populations in human early visual areas,
but we find this explanation unlikely. One of the rare previ-
ous human study relying on intracranial recording did not find
power modulation in the high-γ band in the primary visual cor-
tex during MSI (Quinn et al., 2014). Such inconsistency with
our observation of high-γ modulation by sounds in the occip-
ital cortex could relate to the fact that we investigated audio-
visual integration while Quinn and collaborators (2013)(Quinn
et al., 2014) investigated visual-tactile integration, suggesting
that audio-visual or visuo-tactile integration may rely on differ-
ent neurophysiological mechanisms in the primary visual cor-
tex.

In summary, by analysing the electrophysiological signal
both in the time and frequency domain, our results support
the idea that MSI occurs at the earliest stages of the sen-
sory processing hierarchy (Foxe et al., 2002, Ghazanfar and
Schroeder, 2006), potentially through direct anatomical con-
nections between the visual and auditory cortices. Moreover,
our study compellingly illustrate how stereotactic electrophys-

iological recording in humans represents a unique technique to
investigate the multisensory nature of brain regions, in particu-
lar those classically considered unisensory.
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